Effects of Various Semiconducting Oxides as Photoanode and Counter Electrode for Dye Sensitized Solar Cell Application - A Review

fatiatun fatiatun, Suryani Abu Bakar, Putut Marwoto, Kusnanto Mukti Wibowo, Muqoyyanah Muqoyyanah, Firdaus Firdaus

Abstract

Dye sensitized solar cells (DSSCs) merupakan teknologi alternatif fotovoltaik yang menguntungkan. DSSCs menunjukkan harga yang murah, efisiensi yang tinggi dan proses pembuatan yang sederhana. Dalam aplikasi DSSCs, fotoanoda memiliki peranan yang penting untuk mengumpulkan elektron-elektron yang tereksitasi dan dye berfungsi untuk menyalurkan cahaya elektron-elektron ke transparent conducting film (TCF). Fotoanoda mempunyai band gap yang lebar pada semikonduktor logam oksida (contoh: zinc oxide (ZnO) dan titanium dioxide (TiO2)) yang dilapiskan pada TCF. Counter electrode (CE) adalah salah satu komponen yang penting dalam proses kerja DSSCs. CE digunakan sebagai mediator untuk membangkitkan sensitizer setelah masuknya elektron. Bahan CE yang ideal harus mempunyai resistansi yang rendah, biaya produksi yang murah, konduktivitas listrik yang tinggi, aktivitas elektrokatalitik yang bagus dan stabilitas yang tinggi. Bahan-bahan CE yang umum digunakan untuk aplikasi DSSCs yaitu seperti platina (Pt), karbon, carbon nanotubes (CNTs), grafin dan polimer konduktif. Review ini dikembangkan untuk mempelajari sifat-sifat bahan fotoanoda dan CE yang bagus untuk aplikasi DSSCs. Review ini juga digunakan untuk memberikan informasi untuk perkembangan bahan-bahan fotoanoda dan CE pada penelitian selanjutnya dalam aplikasi DSSCs. Dalam review ini, pengaruh bahan-bahan yang digunakan untuk fotoanoda dan CE dalam aplikasi DSSCs didiskusikan.

Keywords

fotoanoda; counter electrode; dye sensitized solar cells

Full Text:

PDF

References

Dresselhaus, M.S., Thomas, I. L. 2001. Alternative energy technologies. Nature, Vol. 414, Page 332-337.

Sugathan, V., John, E., Sudhakar, K. 2015. Recent improvements in dye sensitized solar cells : A review. Renew. Sustain. Energy Rev, Vol. 52, Page 54–64.

Chapin, D. M., Fuller, C. S., Pearson, G. L. 1954. A New silicon pn junction photocell for converting solar radiation into electrical power. J. Apll. Phys, Vol. 676, Page 22–24.

O’Regan, B., Gratzel, M. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature, Vol. 353, No. 6346, Page 737–740.

Marwoto, P., Fatiatun, Sulhadi., Sugianto., Aryanto, D. 2016. Effects of argon pressure on the properties of ZnO: Ga thin films deposited by DC magnetron sputtering. AIP Conf. Proc, Vol. 1719, No. 30016.

Birel, O., Nadeem, S., Duman, H. 2017. Porphyrin-Based dye-sensitized solar cells ( DSSCs ): a Review. J Fluoresc, Vol. 27, Page 1075-1085.

Suriani, A. B., Fatiatun, Mohmed, A., Muqoyyanah., Hashim, N., Rosmi, M.S., Mamat, M.H., Malek, M.F., Salifairus, M.J., Khalil, H.P.S.A. 2018. Reduced graphene oxide/platinum hybrid counter electrode assisted by custom-made triple-tail surfactant and zinc oxide/titanium dioxide bilayer nanocomposite photoanode for enhancement of DSSCs photovoltaic performance. Opt-Int. J. Light Electron Opt, Vol. 161, Page 70–83.

Ameer, A.A., Suriani, A.B., Jabur, A.R., Hashim, N., Fatiatun., Zaid, K. 2019. The fabrication of zinc oxide nanorods and nanowires by sol gel immersion methods. IOP Conf. Series: J. Phys, Vol. 1170.

Sulhadi, Fatiatun, Marwoto, P., Sugianto, Wibowo, E. 2015. Deposition temperature variations on the structure, optical and electrical properties of zinc oxide thin films doped gallium (ZnO:Ga). J. Pendidik. Fis. Indonesia, Vol. 11, No. 1.

Grätzel, M. 2003. Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev, Vol. 4, No. 2, Page 145–153.

Andualem, A., Demiss, S. Review on dye-sensitized solar cells ( DSSCs ). 2018. J. Heterocyclis, Vol. 1, No. 1, Page. 29–34.

Gong, J., Sumathy, K., Qiao, Q., Zhou, Z. 2017. Review on dye sensitized solar cells (DSSCs): advanced technique and research trends. Renew. Sustain. Energy Rev., Vol. 68, Page. 234–246.

Fatiatun., Suriani, A.B., Mohamed, A., Hashim, N., Mamat, M.H., Malek, M.F. 2017. The structural properties of ZnO/TiO2 bilayer thin film as photoanode. Sainmatika, Vol. 14, No. 1.

Sengupta, D., Das, P., Mondal, B., Mukherjee, K. 2016. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application - A review. Renew. Sustain. Energy Rev, Vol. 60, Page 356–376.

Suriani. A. B., Fatiatun., Mohamed, A., Muqoyyanah., Hashim, N., Mamat, M.H., Ahmad, M.K., Marwoto, P. 2019. Improved DSSC photovoltaic performance using reduced graphene oxide – carbon nanotube/platinum assisted with customised triple ‑ tail surfactant as counter electrode and zinc oxide nanowire/titanium dioxide nanoparticle bilayer nanocomposite as photoanode. Graphene Technol, Vol. 4, Page 17-31.

Rani, M., Tripathi, S.K. 2015. A comparative study of nanostructured TiO2, ZnO and bilayer TiO2/ZnO dye-sensitized solar cells. J. Electron. Mater, Vol. 44, No, 4, Page 1151–1159.

Ye, M., Wen, X., Wang, M., Locozzia, J., Zhang, N., Lin, C., Lin, Z. 2015. Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today, Vol. 18, No. 3, Page 155–162.

Lee, D., Lee, H., Ahn, Y., Lee, Y. 2015. High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure. Carbon, Vol. 81, Page 439-446.

Aouaj, M. A., Diaz, R., Belayachi, F. Rueda, Abd-lefdil, M. 2009. Comparative study of ITO and FTO thin films grown by spray pyrolysis. Mat. Res. Bull, Vol. 44, Page 1458–1461.

Genesio, G., Meyer, D. 2018. Recent status on MOF Thin films on transparent conductive oxides recent status on MOF thin films on transparent conductive oxides substrates ( ITO or FTO ). New. J. Chem, No. 4.

Suhaimi, S., Shahimin, M. M., Alahmed, Z. 2015. Materials for enhanced dye-sensitized solar cell performance : electrochemical application. Int. J. Electrochem. Sci, Vol. 10, Page 2859-2871.

Vittal, R., Ho, K. 2016. Zinc oxide based dye-sensitized solar cells : A review,” Renew. Sustain. Energy Rev., Vp. 70, Page. 920-935.

Arunachalam, A., Dhanapandian, S., Manoharan, C., Sridhar, R. 2015. Spectrochimica acta part A : molecular and biomolecular spectroscopy characterization of sprayed TiO2 on ITO substrates for solar cell applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc, Vol. 149, Page 904–912.

Zhang, Z., Gao, C., Wu, Z., Han, W. 2015. Toward efficient photoelectrochemical water-splitting by using screw-like SnO2 nanostructures as photoanode after being decorated with CdS quantum dots. Nano Energy, Vol. 19, Page 318-327.

Enyan, G. L. Y. 2015. Tailored SrTiO3/TiO2 heterostructures for dye-sensitized solar cells with enhanced photoelectric conversion performance. J. Mater. Chem. A.

Siwatch, S., Singh, V., Kumar, A., Kumar, S., Chauhan, N., Kumari, M. 2019. Optik Effect of novel ZnO/Zn2 SnO4 photoanode on the performance of dye sensitized solar cell. Opt -Int. J. Light Electron Opt., Vol 194, Page 163117

Beedri, N.. I., Baviskar, P. K. 2018. Bilayered ZnO/Nb2O5 photoanode for dye sensitized solar cell. Inter. J. Modern. Phys. B, Vol. 32, Page 1–5.

Hoffmann, M. R.., Martin, S. T., Choi, W., Bahnemannt, D. W. 1995 Environmental applications of semiconductor photocatalysis. Chem. Rev, Vol. 95, Page 69–96.

Chai, S., Lau, T., Dayou, J., Sipaut, C. S., Mansa, R. F. 2014. Development in photoanode materials for high efficiency dye sensitized solar cells. Inter. J. Renew. En. Research, Vol. 4, No. 3.

Ma, J., Ren, W., Zhao, J., Yang, H. 2016. Growth of TiO2 nanoflowers photoanode for dye-sensitized solar cells. J. Alloys Compd., Vol. 692, Page 1004-1009.

Kang, S.H., kang, M.S., Kim, H.S., Kim, J.Y., chung, Y.Y., Smyrl, W., Sung, Y.E. 2008. Columnar rutile TiO2 based dye-sensitized solar cells by radio-frequency magnetron sputtering. J. Pow. Sourc, Vol. 184, Page 331–335.

Narayan, M. R. 2012. Review : Dye sensitized solar cells based on natural photosensitizers. Renew. Sustain. Energy Rev, Vol. 16, No. 1, Page 208–215.

Park, N., Van De Lagemaat, J., Frank, A. J. 2000. Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem B, Vol. 104, Page 8989–8994.

Yang, Y., Zhao, J., Cui, C., Zhang, Y., Hu, H., Xu, L., Pan, J., Li, C., tang, W. 2016. Hydrothermal growth of ZnO nanowires scaffolds within mesoporous TiO2 photoanodes for dye-sensitized solar cells with enhanced efficiency. Electrochim. Acta, Vol. 196, page 348-356.

Li, F., Wang, G., Jiao, Y., Li, J., Xie, S. 2014. Efficiency enhancement of ZnO-based dye-sensitized solar cell by hollow TiO2 nanofibers. J. Alloys Compd., Vol. 611, Page 19–23.

Li, Y., Guo, W., Wang, L., Su, Q., Jin, S., Qin, L., Gao, W., Liu, G., Hu, Z. 2015. Enhancing photoelectrical performance of dye–sensitized solar cell by doping SrTiO3:Sm3+@SiO2 core–shell nanoparticles in the photoanode. Electrochim. Acta, Vol. 173, Page 656-664.

Li,W., Jin, G., Hu, H., Li, J., Yang, Y., Chen, Q. 2015. Phosphotungstic acid and WO 3 incorporated TiO2 thin films as novel photoanodes in dye-sensitized solar cells. Electrochim. Acta, Vol. 153, Page 499–507.

Mohamed, I. M. A., Dao, V., Yasin, A. S., Choi, H., Barakat, I. M. A. 2016. Synthesis of novel SnO2 @ TiO2 nanofibers as an efficient photoanode of dye-sensitized solar cells. Inter. J. Hydrog. Energy, Vol. 41, No. 25, Page 10578-10589.

Suriani, A. B., Muqoyyanah., Mohamed, A., Mamat, M. H., Hashim, N. 2018. Improving the photovoltaic performance of DSSCs using a combination of mixed-phase TiO2 nanostructure photoanode and agglomerated free reduced graphene oxide counter electrode assisted with hyperbranched surfactant. Opt.-Int. J. Light Electron Opt., Vol 158, Page 522–534.

Ahmadi, S., Asim, N., Alghoul, M.A., Hammadi, F.Y. 2014. The Role of physical techniques on the preparation of photoanodes for dye sensitized solar cells. Inter. J. Photoen, Vol. 2014

Zhang, B., Zhang, H., Wang, Z., Zhang, X., Qin, X., Dai, Y. 2017. Doping strategy to promote the charge separation in BiVO4 photoanodes. Applied Catal. B, Environ, Vol. 211, Page 258-265.

Liu, J., Poh, C. K., Zhan, D., Lai, L. 2013. Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy, Vol. 2, No. 3, Page 377–386.

Kakiage, K., Tokutome, T., Iwamoto, S., Hanaya, M. 2013. Fabrication of a dye-sensitized solar cell containing a Mg-doped TiO2 electrode and a Br3 _/Br_ redox mediator with a high open-circuit photovoltage of 1.21 V. Chem. Commun, Vol. 49, No. 179.

Tanyi, A. R., Rafieh, A. I., Ekaneyaka, P., Tan, A. L. 2015. Corrigendum to ‘ Enhanced efficiency of dye-sensitized solar cells based on Mg and La co-doped TiO 2 photoanodes. Electrochim. Acta, Vol. 180, Page 1094.

Su, H., Huang, T-T., Chang, Y-H., Zhai, P., Hau, N. Y. 2015. The synthesis of Nb-doped TiO2 nanoparticles for improved-performance dye sensitized solar cells. Electrochim. Acta, Vol 182, Page 230–237.

Momeni, M. M. 2016. Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes. Rare Met., Vol. 36, Page 865-871.

Motlak, M., Akhtar, M. S., Barakat, N. A. M., Hamza, A. M., Yang, O. B., Yong,H. 2014. High-efficiency electrode based on nitrogen-doped TiO2 nanofibers for dye-sensitized solar cells. Electrochim. Acta, Vol 115, Page 493–498.

Sun, Q., Zhang, J., Wang, P., Zheng, J., Zhang, X. 2013. Sulfur-doped TiO2 nanocrystalline photoanodes for dye-sensitized solar cells. J. Renew. Sustain. Ener, Vol. 4.

Ho, C-Y., Lin, J. K., Wang, H. 2015. Characteristics of boron decorated TiO2 nanoparticles for dye-sensitized solar cell photoanode. Inter. J. Photoenergy, Vol. 2015, Page 1-9.

Trung, N., Jae, S., Hee, O., Seo, J. 2014. Fabrication and characterization of electrospun carbon nanotubes/titanium dioxide nanofibers used in anodes of dye-sensitized solar cells. Synth. Met, Vol. 193, Page 125–131.

Hou, S., Li, C. 2016. Fabricated ZnO Nanorods on transparent conductive Ga-doped ZnO film as fabricated zno nanorods on transparent conductive Ga-doped ZnO film as photoanodes applying for dye-sensitized solar cell. Nanosci. Nanotechnol. Lett, Vol. 8, No. 7, Page 561-566.

Guo, X., Dong, H., Niu, G., Qiu, Y., Wang, L 2014. Mg doping in nanosheet-based spherical structured ZnO photoanode for quasi-solid dye-sensitized solar cells. RSC Adv, Vol. 4, Page 21294–21300.

Dhamodharan, P., Manoharan, C., Bououdina, M., Venkadachalapathy, R., Ramalingam, S. 2017. Al-doped ZnO thin films grown onto ITO substrates as photoanode in dye sensitized solar cell. Sol. Energy, Vol. 141, Page 127–144.

Bai, J., Xu, X., Xu, L., Cui, J., Huang, D., Chen, W., Cheng, Y., Shen, Y., Wang, M. 2013. Potassium-doped zinc oxide as photocathode material in dye-sensitized solar cells. Chem. Sus. Chem, Vol. 6, Page 622–629.

Kamegawa, T., Matsuura, S., Seto, H., Yamashita, H. 2013. A visible-light-harvesting assembly with a sulfocalixarene linker between dyes and a Pt-TiO2 Photocatalyst. Angewandte. Comm, Page 916–919.

Kislyuk, V. V., Dimitriev, O. P. 2008. Nanorods and nanotubes for solar cells. J. Nanosci. Nanotechnol, Vol. 8, No. 1, No. 131–148.

Kathirvel, S., Su, C., Shiao, Y., Lin, Y., Chen, B., Li,W. 2016. Solvothermal synthesis of TiO2 nanorods to enhance photovoltaic performance of dye-sensitized solar cells. Sol. Energy, Vol. 132, Page 310–320.

Ye, M., Zheng, D., Lv, M., Chen, C., Lin, C., Lin, Z. 2013. Hierarchically structured nanotubes for highly efficient dye-sensitized solar cells. Adv. Mater, Vol. 25, Page 3039–3044.

Mali, S. S., Betty, C. A., Bhosale, P., Patil, P. S. 2014. From nanocorals to nanorods to nanoflowers nanoarchitecture for efficient dye-sensitized solar cells at relatively low film thickness: All Hydrothermal Process. Scientific. Report., Vol 4, Page 5451-5458.

Iraj, M., Nayeri, F. D., Asl-soleimani, E., Narimani, K. 2015. Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells. J. Alloys Compd., Vol. 659, Page 44-50.

Liao, J-Y., Lei, B-X., Chen, H-Y., Kuang, D-B. Su, C-Y. 2012. Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy & Environ. Sci. Vol. 5.

Zhang, Y., Cai, J., Ma, Y., Qi, L. 2017. Mesocrystalline TiO2 nanosheet arrays with exposed { 001 } facets : Synthesis via topotactic transformation and applications in dye-sensitized solar cells. Nano. Research., Vol. 10, Page2610-2625.

Zhao, C., Zhang, J., Hu, Y., Robertson, N., Hu, P. A., Child, D., Gibson, D., Fu, Y. Q. 2015. In-situ microfluidic controlled, low temperature hydrothermal growth of nanoflakes for dye-sensitized solar cells. Nat. Publ. Gr., Vol. 5, No. 17750.

Omar, A., Abdullah, H., Yarmo, M. A., Shaari, S., Taha, M. R. 2013. Morphological and electron transport studies in ZnO dye-sensitized solar cells incorporating multi- and single-walled carbon nanotubes. J. Phys. D: Appl, Vol. 46.

Kumar, V., Singh, N., Kumar, V., Purohit, L. P., Kapoor, A., Ntwaeaborwa, O. M., Swart, H. C. 2013. Doped zinc oxide window layers for dye sensitized solar cells Doped zinc oxide window layers for dye sensitized solar cells. J. Appl. Phys, Vol. 114.

Zhou, Y., Zhou, W., Du, Y., Li, M., Wu, S. 2011. Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method. Mater. Lett, Vol. 65, No. 11, Page 1535–1537.

Ameer, A. A., Suriani, A. B., Jabur, A. R., Hashim, N., Fatiatun., Zaid, K. 2019. The fabrication of zinc oxide nanorods and nanowires by sol-gel immersion methods. J. Phys. Conf. Ser, Vol. 1170.

Fan, J., Hao, Y., Munuera, C., Hernandez, M. H., Guell, F., Johansson, E. M. J., Boschloo, G., Hagfeldt, A., Cabot, A. 2013. Influence of the annealing atmosphere on the performance of ZnO nanowire dye-sensitized solar cells influence of the annealing atmosphere on the performance of zno nanowire dye-sensitized solar cells. J. Phys. Chem C, Vol. 117, No. 32, Page 16349-16356.

Wu, A. D., Gao, Z., Xu, F., Chang, J., Tao, W., He, J., Jiang, K. 2013. Hierarchical ZnO aggregates assembled by orderly aligned nanorods for dye-sensitized solar cells. Cryst Eng Comm, Vol. 15.

Saurdi, I., Mamat, M. H., Malek, M. F., Rusop, M. 2014. Preparation of aligned zno nanorod arrays on Sn-doped ZnO thin films by sonicated sol-gel immersion fabricated for dye-sensitized solar cell. Adv. Mater. Sci. Eng.

Tan, W. K., Lockman, Z., Razak, K. A., Kawamura, G., Muto, H., Matsuda, A. 2013. Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction. Inter. J. Energy. Res.

Li, Z. Z. Z., Zhou, Y., Xue, G., Yu, T. 2012. Fabrication of hierarchically assembled microspheres consisting of nanoporous ZnO nanosheets for high-efficiency dye-sensitized solar cells. J. Mater. Chem, Vol. 29.

Mou, J., Zhang, W., Fan, J., Deng, H., Chen, W. 2011. Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells. J. Alloys Compd, Vol. 509, No. 3, Page 961–965.

Dhas, V.,Muduli, S., Lee, W., Han, S. H., Ogale, S. 2008. Enhanced conversion efficiency in dye-sensitized solar cells based on ZnO bifunctional nanoflowers loaded with gold nanoparticles. Appl. Phys. Lett, Vol. 93, Page 1–4.

Amin, G., Asif, M. H., Zainelabdin, A., Zaman, S., Nur, O., Willander, M. 2011. Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J. Nanomat, Vol. 2011.

Malek, M. F., Mamat, M. H., Soga, T., Rahman, S. A., Suriani, A. B., Ismail, A. S., Rusop. M. 2016. Thickness-controlled synthesis of vertically aligned c -axis oriented ZnO nanorod arrays: Effect of growth time via novel dual sonication sol–gel process. Jpn. J. Appl. Phys, Vol. 55, Page 01AE15.

Kwak, C., Woo, H., Abdel-hady, F., Wazzan, A. A., Lee, J. 2015. Vapour-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol. Sensors Actuators B. Chem., Vol. 223, Page 527-534.

Xu, C. H., You, Y. F., Wang, J. Z., Ge, S. F., Fong, W. K. Leung, K., Surya, C. 2013. Growth behavior of ZnO nanowires on Au-seeded SiO2 – GaN co-substrate by vapor transport and deposition. Superlattices and Microstructures, Vol. 61, Page 97–105.

Kim, K. H., Utashiro, K., Abe, Y., Kawamura, M. 2014. Growth of zinc oxide nanorods using various seed layer annealing temperatures and substrate materials. Materials, Vol. 9, Page 2080–2089.

Lien, S. T., Chen, J. Z., Yang, Y. J., Hsu, C. C., Cheng, I. C. 2014. Sol-gel derived amorphous/nanocrystalline MgZnO thin films annealed by atmospheric pressure plasma jets. Ceram. Int, Vol. 40, No. 2, Page 2707–2715.

Zhang, D. 2012. Enhancement of the photocatalytic activity of modified TiO2 nanoparticles with Zn2+. Correlation between Structure and Properties 1. Russian J Phys Chem A, Vol. 86, No. 3, Page 489–494.

Wang, Y. 2009. Research progress on a novel conductive polymer—poly(3,4- ethylenedioxythiophene) (PEDOT). J. Phys. Conf. Ser, Vol. 152.

Zhu, F., Zhang, P., Wu, X., Fu, L., Zhang, J., Xu, D. 2012. The origin of higher open-circuit voltage in zn-doped TiO2 nanoparticle-based dye-sensitized solar cells. Chem Phys Chem.

Jena, A. V. G., Mohanty, S. P., Kumar, P., Naduvath, J., Lekha, P. B. P., Das, J., Narula, H. K. 2012. Dye sensitized solar cells: A review. Top. Rev, Vol. 71, No. 1.

Chandra, N., Nath, D., Kim, C., Kim, P., Lee, J. 2013. Deprotonation of N3 Adsorbed on TiO2 for high-performance dye-sensitized solar cells (DSSCs). J. Mat. Chem. A, Vol. 1, Page 13439–13442.

Campbell, W. M., Jolley, K. W., Wagner, P., Wagner, K., Walsh, K. W. 2007. Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J. Phys. Chem. C, Vol. 36, No. 3, Page 11760–11762.

Yao, Z., Zhng, M., Wu, H. W., Li, R., Wang, P. 2015. A donor-acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. J. Am. Chem. Soc., Vol. 137, No. 11, Page 3799-3802.

Sengupta, D., Mondal, B., Mukherjee, K. 2015. Visible light absorption and photo-sensitizing properties of spinach leaves. Spectrochim. Acta Part A Mol. Biomol. Spectrosc, Vol. 148, Page 85-92.

Senthil, R. A., Theerthagiri, J., Madhavan, J., Arof, A. K. 2016. Performance characteristics of guanine incorporated PVDF-HFP/PEO polymer blend electrolytes with binary iodide salts for dye-sensitized solar cells. Opt. Mater. (Amst)., Vol. 58, Page 357–364.

Yen, Y.-S., Chou, H.-H., Chen, Y.-C., Hsu, C.-Y., Lin, J. T. Recent developments in molecule-based organic materials for dye-sensitized solar cells. J. Mater. Chem. Vol. 22, Page 8734–8747.

Nagarajan, B., Kushwara, S., Elumalai, R., Mandal, S. Ramanujam, K., Raghavachari, D. 2017. Novel ethynyl-pyrene substituted phenothiazine based metal free organic dyes in DSSC with 12% conversion efficiency. Materials Chemistry A, Vol. 21.

Zanni, M. T., Greenblatt, B. J., Davis, A. V. 1999. Photodissociation of gas phase I3 2 using femtosecond photoelectron spectroscopy. J. Chem. Phys, Vol. 111, No. 7.

Kebede, Z., Lindquist, S. 1999. Donor— acceptor interaction between non-aqueous solvents and I to generate I, and its implication in dye sensitized solar cells. Sol. Ener. Mat & Sol Cells, Vol. 57, Page 259-275.

Bella, F., Pugliese, D., Zolin, L., Gerbaldi, C. 2014. Paper-based quasi-solid dye-sensitized solar cells. J. Power Sources, Vol. 237, Page 87-93.

Achari, M. B., Elumalai, V., Safdari, K. M., Gao, J. 2013. Quasi-liquid polymer-based cobalt redox mediator electrolyte for dyesensitized solar cells. Phys. Chem. Chem. Phys, Vol. 40.

Chen, H-Y., Lin, L., Yu, X-Y., Qiu, K-Q., Lu, X-Y., Kuang, D-B., Su, C-Y. 2013. Dextran based highly conductive hydrogel polysulfide electrolyte for effiicient quasi-solid-state quantum dot-sensitized solar cells. Electrochim. Acta, Vol. 92, Page 117-123.

Thomas, S. V. N. S., Deepak, T. G., Anjusree, G. S., Arun, T. A., Nair, A. S. 2014. A review on counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A, Vol. 2.

Jumini, S., Fatiatun., Suriani, A. B., Marwoto, P. 2019. The structural , optical and electrical properties of graphene oxide-based counter electrode. Inter. J. Adv. Mutidis. Sci. Res, Vol. 2, No. 3, Page 1–8.

Wang, H., Sun, K., Tao, F., Stacchiola, D. J., Hu, Y. H. 2013. 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew. Chemie - Int. Ed, Vol. 52, No. 35, Page 9210–9214.

Chang, L. H., Hieh, C. K., Hsiao, M. C., Chiang, J. C., Liu, P. I., Ho, K K., Ma, C. C. M., Yen, M. Y., Tsai, M. C., Tsai, C. H. 2013. A graphene-multi-walled carbon nanotube hybrid supported on fluorinated tin oxide as a counter electrode of dye-sensitized solar cells. J. Power Sources, Vol. 222, Page 518–525.

Chang, Q., Ma, Z., Wang, J., Yan, Y., Shi, W., Chen, Q., Huang, Y., Yu, Q., Huang, L. 2014. Graphene nanosheets inserted by silver nanoparticles as zero-dimensional nanospacers for dye sensitized solar cells. Nanoscale, Vol. 10, Page 5410–5415).

Kamau, G. N. 1988. Surface preparation od glasy carbon electrodes. Analytica Chimica Acta, Vol. 207, Page 1–16.

Yang, W., Ma, X., Xu, X., Li, Y., Raj, S. I., Ning, G., Wang, A., Chen, S. 2015. Sulfur-doped porous carbon as metal-free counter electrode for high- efficiency dye-sensitized solar cells. J. Power Sources, Vol. 282, Page 228–234.

Ma, J., Li, C., Yu, F., Chen, J. 2015. Brick-like ’ N-doped graphene/carbon nanotube structure forming three-dimensional films as high performance metal-free counter electrodes in dye-sensitized solar cells. J. Power Sources, Vol. 273, Page 1048–1055.

Kole, M., Dey, T. K. 2013. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J. Appl. Phys, Vol. 113, No. 8.

Parvez, K., Wu, Z., Li, R., Liu, X., Graf, R. 2014. Exfoliation of graphite into graphene in aqueous solutions. J. Am. Chem. Soc, Vol. 136, Page 6083-6091.

Li, Z., Song, B., Wu, Z., Lin, Z., Yao, Y., Moon, K. S., Wong, C. P. 2015. 3D porous graphene with ultrahigh surface area for microscale capacitive deionization. Nano Energy, Vol. 11, Page 711–718.

Ovid’ko, I. 2013. Mechanical properties of graphene. Rev. Adv. Mater. Sci, Vol. 34, Page 1–11.

Yu, Y-H., Chi, W-F, Huang, W-C, Wang, W-S., Shih, C-J., Tsai, C-H. 2016. High-efficiency counter electrodes using graphene hybrid with a macrocyclic nickel complex for dye sensitized solar cells. Organic. Electronics, Vol. 31, Page 207-216.

Liu, H., Liang, S. P., Wu, T. J., Chang, H., Kao, P. K. 2014. Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells. ACS Appl. Mater. Interfaces, Vol. 6, No. 17, Page 15105-15112.

Zaaba, N. I., Foo, K. L., Hashim, U., Tan, S. J., Liu, W. W., Voon, C-H. 2017. Synthesis of graphene oxide using modified hummers method: solvent influence, Procedia Eng., Vol. 184, Page 469–477.

Chen, J., Yao, B., Li, C. Shi. 2013. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, Vol. 4, No. 1, Page 225–229.

Gomaa, M., Fattah, G. A. 2016. Synthesis of graphene and graphene oxide by microwave plasma chemical vapor deposition. J. American. Sci, Vol. 12, No. 3, Page 72-80.

Xu, CP. Shin, L. Cao, Gao, D. 2017. Preferential Growth of long zno nanowire array and its application in dye-sensitized solar cells. Interm J, Vol. 2010.

Jiao, K., Zhang, D., Chen. Y. 2014. Efficient and cost-effective grapene on silicon solar cells prepared by spray coating. RSC. Adv, Vol. 4, Page 55300–55304.

Panthi, D., Tsutsumi, A. 2014. A novel multistep dip-coating method for the fabrication of anode-supported microtubular solid oxide fuel cells. J. Solid. State. Electrochem., Vol. 18, Page 1899-1905.

Ke, C-R., Ching, C-C., Ting, J-M. 2015. Modified conducting polymer film having high catalytic activity for use as counter electrodes in rigid and flexible dye-sensitized solar cells. J. Power. Sources., Vol. 284, Page 489-496.

Refbacks

  • There are currently no refbacks.