Efek Penggunaan Cairan Ionik sebagai Aditif terhadap Konduktivitas Ionik Elektrolit Baterai Ion Litium
Abstract
Keywords
Full Text:
PDFReferences
Zhang, B., Zhou, Y., Li, X., Ren, X., Nian, H., Shen, Y., & Yun, Q. 2013. Ion-molecule Interaction in Solutions of Lithium Tetrafluoroborate in Propylene Carbonate: an FTIR Vibrational Spectroscopic Study. Int. J. Electrochem. Sci, 8, 12735-12740
Yang, H., Zhuang, G. V., & Ross, P. N. 2006. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. Journal of Power Sources, 161(1), 573-579
Goodenough, J. B. & Kim, Y. 2010. Challenges for Rechargeable Li Batteries. Chem. Mater, 22, 587–603
Kawamura, T., Okada, S., & ichi Yamaki, J. 2006. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J. Power Sources, 156(2), 547–554
Chen, Z., Lu, W. Q., Liu, J., & Amine, K. 2006. LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries. Electrochim. Acta, 51(16), 3322–3326
Lux, S. F., Lucas, I. T., Pollak, E., Passerini, S., Winter, M., & Kostecki, R. 2012. The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem. commun, 14(1), 47–50
Dougassa, Y. R., Tessier, C., El Ouatani, L., Anouti, M., & Jacquemin, J. 2013. Low pressure carbon dioxide solubility in lithium-ion batteries based electrolytes as a function of temperature. Measurement and prediction. J. Chem. Thermodyn, 61, 32–44
Zhang, L., Chai, L., Zhang, L., Shen, M., Zhang, X., Battaglia, V. S., Stephenson, T., & Zheng, H. 2014. Synergistic effect between lithium bis (fluorosulfonyl) imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6-based electrolyte for high-performance Li-ion batteries. Electrochimica Acta, 127, 39-44
Zhang, S. S., Xu, K., & Jow, T. R. 2006. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB. J. Power Sources, 156(2), 629–633
Shieh, D. T., Hsieh, P. H., & Yang, M. H. 2007. Effect of mixed LiBOB and LiPF6 salts on electrochemical and thermal properties in LiMn2O4 batteries. J. Power Sources, 174(2), 663–667
Bolloli, M., Alloin, F., Kalhoff, J., Bresser, D., Passerini, S., Judeinstein, P., Leprêtre, J. C., & Sanchez, J. Y. 2015. Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries. Electrochimica Acta, 161, 159-170
Yang, B., Li, C., Zhou, J., Liu, J., & Zhang, Q. 2014. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries. Electrochim. Acta, 148, 39–45
Zhang, X., Kostecki, R., Richardson, T. J., Pugh, J. K., & Ross, P. N. 2002. Electrochemical and Infrared Studies of the Reduction of Organic Carbonates. J. Electrochem. Soc, 148(12), A1341
Gnanaraj, J. S., Thompson, R. W., DiCarlo, J. F., & Abraham, K. M. 2007. The Role of Carbonate Solvents on Lithium Intercalation into Graphite. J. Electrochem. Soc, 154(3), A185
Xu, K. 2004. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev, 104(10), 4303–4418
Vogl, T., Menne, S., & Balducci, A. 2014. Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries. Phys. Chem. Chem. Phys, 16(45), 25014–25023
Yim, T., Kwon, M. S., Mun, J., & Lee, K. T. 2015. Room temperature ionic liquid-based electrolytes as an alternative to carbonate-based electrolytes. Isr. J. Chem, 55(5), 586–598
Wilken, S., Xiong, S., Scheers, J., Jacobsson, P., & Johansson, P. 2015. Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties. J. Power Sources, 275, 935–942
Galiński, M., Lewandowski, A., & Stepniak, I. 2006. Ionic liquids as electrolytes. Electrochim. Acta, 51(26), 5567–5580
Srivastava, A. K., & Samant, R. A. 1994. Ionic Conductivity in Binary Solvent Mixtures. 1. Propylene Carbonate (20 mass %) + Ethylene Carbonate at 25°C. J. Chem. Eng. Data, 39, 358–360
Osman, Z., Mohd Ghazali, M. I., Othman, L., & Md Isa, K. B. 2012. AC ionic conductivity and DC polarization method of lithium ion transport in PMMA-LiBF4 gel polymer electrolytes. Results Phys, 2, 1–4
Nasri, S., Ben Hafsia, A. L., Tabellout, M., & Megdiche, M. 2016. Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3-δ perovskite oxides, RSC Adv, 6(80), 76659–76665
Vijaya, N., Selvasekarapandian, S., Malathi, J., Iwai, Y., Nithya, H., and Kawamura J. 2012. CONDUCTIVITY AND 1H NMR STUDIES ON PVP: NH4Br POLYMER ELECTROLYTE, Proceeding of the 13th Asian Conference on Solid State Ionics, 342–333.
Murmann, P., Niehoff, P., Schmitz, R., Nowak, S., Gores, H., Ignatiev, N., Sartori, P., Winter, M., & Schmitz, R. 2013. Investigations on the electrochemical performance and thermal stability of two new lithium electrolyte salts in comparison to LiPF6. Electrochimica Acta, 114, 658-666
Garcia, B., Lavalle, S., Gerald, P., Michot, C., & Armand, M. 2004. Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta, 49, 4583–4588
Refbacks
- There are currently no refbacks.