Efek Penggunaan Cairan Ionik sebagai Aditif terhadap Konduktivitas Ionik Elektrolit Baterai Ion Litium

Atut Reni Septiana, Evvy Kartini, Wagiyo Honggowiranto, Sudaryanto Sudaryanto, Rahmat Hidayat

Abstract

Teknologi baterai litium ion merupakan alternatif penyuplai energi pada peralatan portabel, divais elektronik, dan aplikasi tenaga tinggi seperti kendaraan listrik dan penyimpanan daya untuk energi terbarukan. Pada baterai litium ion, elektrolit memainkan peranan penting pada performa baterai. Elektrolit baterai litium ion, pada umumnya terdiri dari garam litium yang dilarutkan dalam pelarut organik dan aditif. Namun, LiPF6 tidak stabil secara termal dan mempengaruhi performa baterai secara signifikan. Selain itu, pelarut standar (konvensional) juga memiliki beberapa kekurangan jika diaplikasikan pada kendaraan listrik. Terkait dengan masalah tersebut, penggunaan elektrolit jenis lainnya, yakni garam litium, seperti lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) yang dapat dikombinasikan dengan cairan ionik menjadi sangat penting untuk dikaji. Oleh karena itu, dalam penelitian ini telah dikaji karakteristik konduktivitas ionik elektrolit berbasis LiTFSI. Pengukuran konduktivitas ionik elektrolit (LiTFSI) dalam pelarut karbonat dengan dan tanpa cairan ionik BMIMTFSI sebagai aditif telah dilakukan. Konduktivitas ionik elektrolit LiTFSI dalam pelarut karbonat dengan tambahan cairan ionik lebih tinggi dibandingkan LiTFSI tanpa tambahan cairan ionik, masing-masing yaitu 3.1 mS/cm and 2.7 mS/cm.

Keywords

baterai ion litium, elektrolit, LiPF6, LiTFSI, cairan ionik BMIMTFSI

Full Text:

PDF

References

Zhang, B., Zhou, Y., Li, X., Ren, X., Nian, H., Shen, Y., & Yun, Q. 2013. Ion-molecule Interaction in Solutions of Lithium Tetrafluoroborate in Propylene Carbonate: an FTIR Vibrational Spectroscopic Study. Int. J. Electrochem. Sci, 8, 12735-12740

Yang, H., Zhuang, G. V., & Ross, P. N. 2006. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. Journal of Power Sources, 161(1), 573-579

Goodenough, J. B. & Kim, Y. 2010. Challenges for Rechargeable Li Batteries. Chem. Mater, 22, 587–603

Kawamura, T., Okada, S., & ichi Yamaki, J. 2006. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J. Power Sources, 156(2), 547–554

Chen, Z., Lu, W. Q., Liu, J., & Amine, K. 2006. LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries. Electrochim. Acta, 51(16), 3322–3326

Lux, S. F., Lucas, I. T., Pollak, E., Passerini, S., Winter, M., & Kostecki, R. 2012. The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem. commun, 14(1), 47–50

Dougassa, Y. R., Tessier, C., El Ouatani, L., Anouti, M., & Jacquemin, J. 2013. Low pressure carbon dioxide solubility in lithium-ion batteries based electrolytes as a function of temperature. Measurement and prediction. J. Chem. Thermodyn, 61, 32–44

Zhang, L., Chai, L., Zhang, L., Shen, M., Zhang, X., Battaglia, V. S., Stephenson, T., & Zheng, H. 2014. Synergistic effect between lithium bis (fluorosulfonyl) imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6-based electrolyte for high-performance Li-ion batteries. Electrochimica Acta, 127, 39-44

Zhang, S. S., Xu, K., & Jow, T. R. 2006. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB. J. Power Sources, 156(2), 629–633

Shieh, D. T., Hsieh, P. H., & Yang, M. H. 2007. Effect of mixed LiBOB and LiPF6 salts on electrochemical and thermal properties in LiMn2O4 batteries. J. Power Sources, 174(2), 663–667

Bolloli, M., Alloin, F., Kalhoff, J., Bresser, D., Passerini, S., Judeinstein, P., Leprêtre, J. C., & Sanchez, J. Y. 2015. Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries. Electrochimica Acta, 161, 159-170

Yang, B., Li, C., Zhou, J., Liu, J., & Zhang, Q. 2014. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries. Electrochim. Acta, 148, 39–45

Zhang, X., Kostecki, R., Richardson, T. J., Pugh, J. K., & Ross, P. N. 2002. Electrochemical and Infrared Studies of the Reduction of Organic Carbonates. J. Electrochem. Soc, 148(12), A1341

Gnanaraj, J. S., Thompson, R. W., DiCarlo, J. F., & Abraham, K. M. 2007. The Role of Carbonate Solvents on Lithium Intercalation into Graphite. J. Electrochem. Soc, 154(3), A185

Xu, K. 2004. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev, 104(10), 4303–4418

Vogl, T., Menne, S., & Balducci, A. 2014. Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries. Phys. Chem. Chem. Phys, 16(45), 25014–25023

Yim, T., Kwon, M. S., Mun, J., & Lee, K. T. 2015. Room temperature ionic liquid-based electrolytes as an alternative to carbonate-based electrolytes. Isr. J. Chem, 55(5), 586–598

Wilken, S., Xiong, S., Scheers, J., Jacobsson, P., & Johansson, P. 2015. Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties. J. Power Sources, 275, 935–942

Galiński, M., Lewandowski, A., & Stepniak, I. 2006. Ionic liquids as electrolytes. Electrochim. Acta, 51(26), 5567–5580

Srivastava, A. K., & Samant, R. A. 1994. Ionic Conductivity in Binary Solvent Mixtures. 1. Propylene Carbonate (20 mass %) + Ethylene Carbonate at 25°C. J. Chem. Eng. Data, 39, 358–360

Osman, Z., Mohd Ghazali, M. I., Othman, L., & Md Isa, K. B. 2012. AC ionic conductivity and DC polarization method of lithium ion transport in PMMA-LiBF4 gel polymer electrolytes. Results Phys, 2, 1–4

Nasri, S., Ben Hafsia, A. L., Tabellout, M., & Megdiche, M. 2016. Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3-δ perovskite oxides, RSC Adv, 6(80), 76659–76665

Vijaya, N., Selvasekarapandian, S., Malathi, J., Iwai, Y., Nithya, H., and Kawamura J. 2012. CONDUCTIVITY AND 1H NMR STUDIES ON PVP: NH4Br POLYMER ELECTROLYTE, Proceeding of the 13th Asian Conference on Solid State Ionics, 342–333.

Murmann, P., Niehoff, P., Schmitz, R., Nowak, S., Gores, H., Ignatiev, N., Sartori, P., Winter, M., & Schmitz, R. 2013. Investigations on the electrochemical performance and thermal stability of two new lithium electrolyte salts in comparison to LiPF6. Electrochimica Acta, 114, 658-666

Garcia, B., Lavalle, S., Gerald, P., Michot, C., & Armand, M. 2004. Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta, 49, 4583–4588

Refbacks

  • There are currently no refbacks.