Influence of Mixing Time to Crystal Structure and Dielectric Constant of Ba0,9Sr0,1TiO3

Dianisa Khoirum Sandi, Agus Supriyanto, Anif Jamaludin, Yofentina Iriani


Barium Strontium Titanate (Ba1-xSrxTiO3) or BST has been synthesized using solid state reaction method. Raw materials of BST were BaCO3, SrCO3, and TiO2. Those materials were mixed, pressed, and sintered at temperature 1200oC for 2 h. Mixing time of raw materials was varied to identify its effects on crystal structures and dielectrics constant of Ba0.9Sr0.1TiO3 using X-Ray Diffraction (XRD) and LCR meter instrument, respectively. The results of XRD showed that crystals structure of Ba0.9Sr0.1TiO3 is tetragonal. Lattice parameter of Ba0.9Sr0.1TiO3 for 6 h of mixing time is a = b = 3.988 Å and c = 3.998 Å. Lattice parameter of Ba0.9Sr0.1TiO3 for 8 h of mixing time is a = b = 3.976 Å and c = 4.000 Å. Crystalline size of Ba0.9Sr0.1TiO3 was calculated using Scherrer equation. Crystalline size, crystallinity, and dielectric constant of Ba0.9Sr0.1TiO3 for 6 h of mixing time is 38 nm, 96%, and 115 at frequency 1 KHz, respectively while their value for 8 h of mixing time is 39 nm, 96%, and 196 at frequency 1 KHz, respectively. Thus it can be concluded that mixing time affects the lattice parameters of Ba0.9Sr0.1TiO3 crystal. The longer mixing time causes crystalline size, crystallinity, and dielectrics constant increase.

Full Text:



Vijatovic, M. M., Bobic, J. D., Stojanovic, B. D. 2008. History and Challenges of Barium Titanate: Part II. Science of Sintering, Vol. 40, pp. 235-244.

Yadav, A. K., Gautam, C. R., & Mishra, A. 2014. Mechanical and Dielectric Behaviors of Perovskite (Ba,Sr)TiO3 Borosilicate Glass Ceramics. Journal of Advanced Ceramics, Vol. 3(2), pp. 137–146. ISSN 2226-4108

Kongtaweelert, S., Sinclair, D.C., & Panichphant, S. 2006. Phase and Morphology Investigation of Ba1-xSrxTiO3 (x = 0.6, 0.7 and 0.8) Powders. Current Applied Physics, Vol. 6, pp. 474–477.

Kholodkova, A., Danchevskaya, M., &Fionov, A. 2012. Study of Nanocrystalline Barium Titanate Formation in Water Vapour Conditions. Nanocon2012, Vol. 10, pp.

Modani, U. S., & Jagrawal, G. 2012. A Survey on Application of Ferroelectric Materials for Fabrication of Microstrip Patch Antennas. International Journal of Recent Technology and Engineering (IJRTE), Vol. 1, pp. 65-72. ISSN: 2277-3878.

Manavalan, S. G. 2005. Structural and Electrical Properties of Barium Strontium Titanate Thin Films for Tunable Microwave Applications. Thesis. University of South Florida.

Kosanovic, D., Obradovi, N., Zivojinovic, J., Filipovic, C., Maricic, A., Pavlovic, V., Tang, Y., & Ristic, M. M. 2012. Mechanical-Chemical Synthesis Ba0.77Sr0.23TiO3. Science of Sintering, Vol. 44, pp. 47-55.

Morintale, E., Scarisoreanu, N., Dinescu, M., &Rotaru, P. 2010. Thermal Stability of BST in a Vast Range Temperature. Physics AUC, Vol. 20 (part 1), pp. 83-89.

Ismunandar. 2006. Padatan Oksida Logam, Struktur, Sintesis dan Sifat-sifatnya. Bandung : Institut Teknologi Bandung

Kim, H., Kim, J., Jung, W., & Yoon, D. 2009. Effect of Starting Materials on The Properties of Solid-State Reacted Barium Titanate Powder. Journal of Ceramic Processing Research. Vol. 10, No. 6, pp. 753-757.

Maharsi, R., Jamaludin, A., Iriani, Y. 2014. Karakterisasi Kekristalan dan Konstanta Dielektrik Ba0,9Sr0,1TiO3 yang Dibuat dengan Metode Solid State Reaction. Jurnal Fisika Indonesia, No: 52, Vol XVIII. ISSN : 1410-2994

Kao, C., & Yang, W. 1999. Preparation of Barium Strontium Titanate Powder from Citrate Precursor. Applied Organometallic Chemistry, Vol. 13, pp. 383–397.

Suryanarayana, C., & Grant Norton, M. X-Ray Diffraction (XRD) : A practical approach. Washington: Washington State University

Serway, R. A., & Jewet, J. W. 2010. Fisika untuk Sains dan Teknik (Terjemahan Chriswan Sungkono). Salemba Teknika: Jakarta.


  • There are currently no refbacks.