Weber’s electrodynamics for the hydrogen atom

H. Torres-Silva, J. López-Bonilla, R. López-Vázquez, J. Rivera-Rebolledo


The original Weber action at a distance theory is valid for slowly varying effects, and it in addition to predicting all of the usual electrodynamical results, leads to crucial effects where the Maxwell theory fails. The Weber’s approach is an alternative to Maxwell electrodynamics, where the Coulomb's law becomes velocity dependent [1-6]. Here we prove that the Weber’s theory gives the fine structure energy level splitting for the hydrogen atom without the assumption of mass change with velocity.

Full Text:



A. K. T. Assis, H. Torres-Silva, Comparison between Weber’s electrodynamics and classical electrodynamics, Pramana J. Phys. 55 (3) (2000) 393–404

A. K. T. Assis, J. J. Caluzi, A limitation of Weber's law, Phys. Lett. A160 (1) (1991) 25–30

J. P. Wesley, Weber electrodynamics, I: General theory, steady current effects, Found. Phys. Lett. 3 (5) (1990) 443–469

J. P. Wesley, Weber electrodynamics, III: Mechanics, gravitation, Found. Phys. Lett. 3 (5) (1990) 581–605

D. K. Lemon, W. F. Edwards, C. S. Kenyon, Electric potentials associated with steady currents in superconducting coils, Phys. Lett. A162 (2) (1992) 105–114

D. R. Walz, H. R. Noyes, Calorimetric test of special relativity, Phys. Rev. A29 (1) (1984) 2110-2114

J. H. Poynting, On the transfer of energy in the electromagnetic field, Phil. Trans. Roy. Soc. London 175 (1884) 343-361

C. Lanczos, The variational principles of mechanics, University of Toronto Press (1970)

A. M. Legendre, L’intégration de quelques equations aux differences partielles, Mémoires de l’Académie (1787)

L. Tisza, Generalized thermodynamics, MIT Press, Cambridge MA (1966)

R. K. P. Zia, E. F. Redish, S. R. McKay, Making sense of the Legendre transform, Am. J. Phys. 77, No. 7 (2009) 614-622

D. Griffiths, Introduction to quantum mechanics, Prentice Hall, New Jersey (2004) Chap. 6

J. J. Sakurai, J. J. Napolitano, Modern quantum mechanics, Addison-Wesley, New York (2010)

A. Sommerfeld, Zur quantentheorie der spektrallinien, Ann. der Physik 51 (1916) 1-94

M. Born, The mysterious number 137, Proc. Indian Acad. Sci. A2 (1935) 533-561

T. Kinoshita, The fine-structure constant, Rep. Prog. Phys. 59 (1996) 1459-1492

H. Kragh, Magic number: A partial history of the fine structure constant, Arch. Hist. Exact Sci. 57, No. 5 (2003) 395-431

V. Tarasenko, The fine structure constant: its physical nature, Galilean Electrodynamics 15, SI, No. 1 (2004) 2

A. A. Michelson, E. W. Morley, Phil. Mag. 24 (1887) 46

W. Houston, Y. M. Hsieh, The fine structure of the Balmer lines, Phys. Rev. 45 (1934) 263-272

W. Houston, A new method of analysis of the structure of Hα and Dα, Phys. Rev. 51, No. 6 (1937) 446-449

R. C. Williams, The fine structure of Hα and Dα under varying discharge conditions, Phys. Rev. 54 (1938) 558-567

S. Pasternack, A note on the fine structure of Hα and Dα, Phys. Rev. 54 (1938) 1113

H. Kragh, The fine structure of hydrogen and the gross structure of the physics community, 1916-26, Hist. Stud. Phys. Sci. 15 (1985) 67-126

J. López-Bonilla, J. Morales, M. Rosales, Hypervirial theorem and matrix elements for the Coulomb potential, Int. J. Quantum Chem. 53, No. 1 (1995) 3-7

J. López-Bonilla, H. N. Núñez-Yépez, A. L. Salas-Brito, Generalized hypervirial and recurrence relations for hydrogenics matrix elements, J. Phys. B: At. Mol. Opt. Phys. 28, No. 17 (1995) L525-L529

M. Bautista M., J. López-Bonilla, J. Morales, Matrix elements for the Coulomb interaction, Apeiron 13, No. 1 (2006) 34-42

J. J. Balmer, Notiz über die spektralinien des wasserstoffs, Verhandlungen der Naturforschenden Gesellschaft in Basel 7 (1885) 548-560

T. Lyman, The spectrum of hydrogen in the region of extremely short wave-length, Memoirs Am. Acad. Arts Sci. 13, No. 3 (1906) 125-146

W. E. Lamb, R. C. Retherford, Fine structure of the hydrogen atom by a microwave method, Phys. Rev. 72, No. 3 (1947) 241-243

H. A. Bethe, The electromagnetic shift of energy levels, Phys. Rev. 72, No. 4 (1947) 339-341

N. M. Kroll, W. E. Lamb, On the self-energy of a bound electron, Phys. Rev. 75, No. 3 (1949) 388-398

W. E. Lamb, The fine-structure of hydrogen, in ‘The Birth of Particle Physics’, Eds. Laurie M. Brown, Lillian Hoddeson, Cambridge University Press (1983) 311-328


  • There are currently no refbacks.