Pemanfaatan Antosianin dari Ekstrak Kol Merah (Brassica oleracea var) sebagai Pewarna Dye-Sensitized Solar Cells (DSSC)

Dinasti Dwi Pratiwi, Risa Suryana, Fahru Nuryoshid


A prototype of Dye-Sensitized Solar Cells (DSSC) utilizing anthocyanin extract from red cabbage was fabricated. This study aims to determine the wavelength absorption of dye contributed in highest efficiency. The sandwich structure of DSSC consists of TiO2 as working electrode, carbon layer as counter electrode, anthocyanin dye as photosensitizer, and electrolyte as electron transfer media. The absorbance of dye was characterized using UV-Vis spectrophotometer, the efficiency of DSSC was calculated using I-V Meter Keithley, and the quantum efficiency was characterized using IPCE Measurement System. The absorption of dye anthocyanin of red cabbage is 450 nm–580 nm wavelengths, I-V characteristic curves resulted efficiency of 0,029%, and IPCE characteristic resulted highest efficiency at wavelength of 420 nm with efficiency of 0,099%.

Full Text:



Grätzel, M. 2003. Dye-Sensitised Solar Cells. Journal of Photochemistry and Photobiology, Vol. 4, pp. 145-153.

Grätzel, M. 2005. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorg Chem, Vol. 44, pp. 6841–6851.

O’regan, B., and Grätzel, M. 1991. Low-Cost, High-Efficiency Solar Cell Based on Dye Sensitized Colloidal TiO2 Films. Nature, Vol. 353, pp. 737–740.

Chiba, Y., Islam, A., Watanab, Y., Komiya, R., Koide, N., and Han, L. 2006. Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%. Japanese Journal of Applied Physcics, Vol. 45, pp. l638–l640.

El-Agez, T.M., Taya, S.A., Elrefi, K.S., and Abdel-Latif, M.S. 2014. Dye-Sensitized Solar Cells Using Some Organic Dyes as Photosensitizers. Optica Applicata, XLIV, Vol. 2, DOI: 10.5277/oa140215.

Calogero, G., and Marco, G. 2008. Red Sicilian Orange and Purple Egg Plant Fruits as Natural Sensitizers for Dye-Sensitized Solar Cells. Solar Energy Materials and Solar Cells, Vol. 92, No. 1, pp. 1341-1346.

Roy, M., Balraju, P., Kumar, M., and Sharma, G. 2008. Dye-Sensitized Solar Cells Based on Rose Bengal Dye and Nanocrystalline TiO2. Solar Energy Materials and Solar Cells, Vol. 92, No. 2, pp. 909-913.

Zhou, H., Wu, L., Gao, Y., and Ma, T. 2011. Dye-Sensitized Solar Cells Using 20 Natural Dyes as Sensitizers. Journal of Photochemistry and Photobiology, Vol. 219, No. 2, pp. 188-194.

Taya, S., El-Agez, T., El-Ghamri, H., and Abdel-Latif, M. 2013. Dye-Sensitized Solar Cells Using Fresh and Dried Natural Dyes. International Journal of Materials Science and Applications, Vol. 2, No. 2, pp. 37-42.

Wongcharee, K., Meeyoo, V., and Chavadej, S. 2007. Dye-Sensitized Solar Cells using Natural Dyes Extracted from Rosella and Blue Pea Flowers. Solar Energy Materials and Solar Cells, Vol. 91, pp. 566-571.

Ludin, N.A., Al-Alwani, M.A.M., Mohamad, A.B., Kadhum, A.H., Sopian, K., & Abdul, K.N.S. 2014. Review on the Development of Natural Dye Photosensitizer for Dye Sensitized Solar Cells. Renewable Sustainable Energy Rev, 31, 386–96.

Tim Harvard Forest. 2011. Leaf Pigments. Cambridge : Fakultas Ilmu Seni, Universitas Harvard.

Giusti, M. M & Wrolstad, R. E. 2003. Characterization and Measurement of Anthocyanins by UV Spectroscopy. USA : John Wiley and Sons.

Tra, T. T. 2003. Stability of These Anthocyanin Extract from Several Plants in Vietnam. Proceeding Vietnam International Conference Food and Technology, 83-93.

Kim, Y. & Wampler, D.J. 2009. Anthocyanin Content in Various Anthocyanin Rich Fruits and Vegetables. SENSUS.

Maddu, A., Zuhri, M., & Irmansyah. 2007. Penggunaan Ekstrak Antosianin Kol merah sebagai Fotosensitizer pada Sel Surya TiO2 Nanokristal Tersensitisasi Dye. Makara Teknologi, 11(2), 78-84.

Chang, H., Wu, Chen, Huang, J., & Lo. 2010. Dye-Sensitized Solar Cells Using Natural Dyes Extracted from Spinach and Ipomoea. Journal of Alloys and Compounds, 495, 606-610.

Fitria, J., Adha, Fany, Sahat, & Tri. 2012. Studi Pemanfaatan Kulit Buah Naga sebagai Materi Sel Surya dengan Metode Dye Sensitized Solar Cell. Laporan PKMP, Jurusan Teknik Material dan Metalurgi ITS.

Chappel, S., Grinis, L., Ofir, A., & Zaban, A. 2005. Extending the Current Collector into the Nanoporous Matrix of Dye Sensitized Electrodes. Journal of Physical Chemistry B, 109, 1643-1647.

Hansen, A.D. 2000. Model for a Stand-Alone PV System. Roskilde : Riso National Laboratory.

Hoffmann M.R., Martin, S.T., Choi, W., & Bahnemann, D.W. 1995. Enviromental Applications of Semiconductor Photocatalysis. Chem. Rev. 95, 69-96.

Govorov, A.O., Zhang, H., & Gun’ko, Y.K. 2013. Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules. J Phys Chem C, 117(166), 16–31.

Govorov, A.O., Zhang, H., Demir, H.V., & Gun’ko, Y.K. 2014. Photogeneration of Hot Plasmonic Electrons with Metal Nanocrystals: Quantum Description and Potential Applications. Nano Today, 9, 85–101.

Brennan, L.J., Milton, F.P., Salmeron, A.S., Zhang, H., Govorov, A.O., Fedorov, A.V., & Gun’ko, Y.K. 2015. Hot Plasmonic Electrons for Generation of Enhanced Photocurrent in Gold-TiO2 Nanocomposites. Nanoscale Research Letters, DOI 10.1186/s11671-014-0710-5


  • There are currently no refbacks.