Pemodelan Tsunami Sederhana dengan Menggunakan Persamaan Differensial Parsial

Indriati Retno Palupi, Wiji Raharjo, Eko Wibowo, Hafiz Hamdalah


One way to solve fluid dynamics problem is using partial differential equation. By using Taylor expansion, fluid dynamics can be applied simply. For the example is tsunami wave. It is include to hyperbolic partial differential equation, tsunami wave propagation can describe in space and time function by using Euler FTCS (Forward Time Central Space) formula.


Persamaan differensial parsial, Euler FTCS, modelling tsunami

Full Text:



InaTEWS BMKG, 2012. Pedoman Pelayanan Peringatan Dini Tsunami. Jakarta: BMKG.

Ilyas, T. 2006. Mitigasi Gempa dan Tsunami Daerah Perkotaan. Seminar Bidang Kerekayasaan. Fatek-Unsrat, 1-23.

Hoffmann, K. A. 1993. Computational Fluid Dynamics for Engineers. The University of Texas at Austria.

Shaw, H. S. & Chakraverty, S. 2014. Numerical Modelling Tsunami Wave Equation. Thesis, Department of Mathematics Nit Rourkela, Rourkela-769 008.

Rezolla, L. 2011. Numerical Methods for the Solution of Partial Differential Equation. Albert-Einstei Institute, Max-Planck-Institiute for Gravitational Physics, Postdam, Germany.

Imamura, F., Yalciner, A. C. & Ozyurt G. 2006. Tsunami Modelling Manual (Tsunami Model). Tohoku University and Middle East Technical Unviersity

Dutykh, D. 2008. Mathematical Modelling of Tsunami Waves. HAL archives-ouvertes. Centre de Math´ematiques et de Leurs Applications ENS CACHAN/CNRS/UMR 8536. France.


  • There are currently no refbacks.