Solusi Persamaan Schrödinger untuk Potensial Hulthen + Non-Sentral Poschl-Teller dengan Menggunakan Metode Nikiforov-Uvarov

Nani Sunarmi, Suparmi S, Cari C

Abstract

The Schrödinger equation for Hulthen potential plus Poschl-Teller Non-Central potential is solved analytically using Nikiforov-Uvarov method. The radial equation and angular equation are obtained through the variable separation. The solving of Schrödinger equation with Nikivorov-Uvarov method (NU) has been done by reducing the two order differensial equation to be the two order differential equation Hypergeometric type through substitution of appropriate variables. The energy levels obtained is a closed function while the wave functions (radial and angular part) are expressed in the form of Jacobi polynomials. The Poschl-Teller Non-Central potential causes the orbital quantum number increased and the energy of the Hulthen potential is increasing positively.

Full Text:

PDF

References

Ikot, A. N. 2011. Analytical Solutions of Schrödinger Equation with Generalized Hyperbolic Potential Using Nikiforov-Uvarov Method. The African Review of Physics, Vol. 6, pp. 221-227.

Ikot, A.N., Antia, A. D., Akpabio, L. E. and Obu, J. A. 2011. Analytical Solutions of Schrödinger Equation with Two- Dimensional Harmonic Potential in Cartesian and Polar Coordinates Via Nikiforov-Uvarov Method. Journal of Vectorial Relativity,Vol. 6 No. 2, pp. 65-76.

Cari and Suparmi. 2012. Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential with the Poschl-Teller Non-central potential Using NU Method. IOSR Journal of Applied Physics (IOSR-JAP) ISSN: 2278-4861,Vol. 2 Issue 3, pp. 13-23.

Kleinert, H. and Mustapic, I. 1992. Summing the Spectral Representation of Poschl teller and Rosen Morse Fixed –Energy Amplitudes. J. Math. Phys, Vol. 33 No. 2, pp. 643- 662.

Ikot, A. N. and Akpabio, L. E. 2010. Approximate Solution of the Schrödinger Equation with Rosen-Morse Potential Including the Centrifugal Term. Applied Physics Research, Vol. 2 No. 2, pp. 202-208.

Meyur, S. and Debnath, S. 2009. Solution of the Schrödinger equation with Hulthén plus Manning-Rosen potential . Lat. Am. J. Phys. Educ., Vol. 3 No. 2, pp. 300-306.

Shojaei, M. R. and Rajabi, A. A. 2011. Determination of energy levels of the Klein–Gordon equation, with pseudo harmonic potential plus the ring shaped potential. International Journal of the Physical Sciences, Vol. 6 No. 33, pp. 7441 – 7446.

Awoga, O. A., Ikot, A. N., Akpan, I. O. and Antia, A. D. 2012. Solution of the Schrödinger equation with axponential Coshine-screened potential. Indian Journal of Pure & Applied Physics, Vol. 50, pp. 217-223.

Sadeghi, J. and Pourhassan, B. 2008. Exact Solution of The Non Central Modified Kratzer Potential Plus a Ring-Shaped Like Potential By The Factorization Method. Electronic Journal of Theoretical Physics, Vol. 5 No. 17, pp. 193-202.

Suparmi, A., Cari, C., Handika, J., Yanuarief, C. and Marini, H. 2012. Approximate Solution of Schrodinger Equation for Modified Poschl-Teller plus Trigonometric Rosen-Morse Non-Central Potentials in Terms of Finite Romanovski Polynomials. IOSR Journal of Applied Physics (IOSR-JAP) ISSN: 2278-4861,Vol. 2 Issue 2 , pp. 43-51.

Gonul , B. and Zorba, I. 2000 . Supersymmetric Solutions of Non Central Potentials. Physics Letters A 269 . pp. 83-88.

Antia, A. D. 2010. Exact Solutions of the Schrodinger Equation with Manning-Rosen Potential Plus a Ring-Shaped Like Potential by Nikiforv-Uvarov Method. European Journal of Scientific Research ISSN 1450-216X, Vol.46 No.1, pp.107-118.

Meyur, S. and Debnath, S. 2010 .Eigen Spektra for Woods-Saxon Plus Rosen Morse Potential. J. Phys. Edu Vol.4 No. 3, pp. 587-597.

Bakkeshizadeh, S. and Vahidi, V. 2012. Exact Solution of the Dirac Equation for The Coloumb Potential Plus NAD Potential by Using the Nikiforov-Uvarov Method. Adv. Studies Theor. Phys., Vol. 6 No. 15, pp.733-742.

Agboola, D. 2011. Schrödinger Equation with Hulthen Potential Plus Ring-Shaped Potential. Communication in Theoritical Physics,Vol. 55 No. 6, pp. 972-976.

Refbacks

  • There are currently no refbacks.