Influence of High Sr2+ Substitution on the Structure and Photocatalytic Activity of Ba1‑XSrxTio3 for Dye Degradation
Abstract
Barium strontium titanate or BST (Ba1-xSrxTiO3) photocatalysts with distinct Sr substitutions (x = 0.5, 0.6, 0.7, and 0.8) were fabricated using the co-precipitation technique. This study aimed to investigate the influence of the high Sr2+ contents on the structural property and photocatalytic activity to identify the optimal composition. X-ray diffraction (XRD analysis) confirmed cubic BST formation at all Sr concentrations and reduced lattice constants with increasing Sr²⁺ contents. Fourier transform infra-red (FTIR) investigation also validated the formation of the prepared BST with different Sr contents. The photocatalytic activity of the BST photocatalysts was evaluated by the degradation of methylene blue (MB) under UV light irradiation. Notably, the photocatalytic efficiency improved at x=0.5 to x=0.7, attributed to enhanced lattice distortion induced by Sr substitution. However, a further increase of x = 0.8 resulted in reduced photocatalytic activity, likely due to the formation of a more symmetric structure and reduced crystal distortion. Ba₀.₃Sr₀.₇TiO₃ exhibited the highest degradation rate (41%) among all samples tested. The results suggest that the high Sr level critically affects the structural properties and photocatalytic efficiency of BST and underline x = 0.7 as the optimal composition for photocatalytic applications.
Keywords
Full Text:
PDFReferences
1 Liu S., Qiu H., Yamamoto A., Yoshida H. 2024. Barium titanate photocatalysts with silver-manganese dual cocatalyst for carbon dioxide reduction with water. Dalton Trans. 53(25), 10712-9. Epub 2024/06/13. doi: 10.1039/d4dt01147c. PubMed PMID: 38869439.
2 Robles-Cortes A. I., Flores-Ramírez D., Armienta-Millán C., Romero-Ibarra I. C., Ortiz-Landeros J. 2023. A facile synthesis of bismuth-modified barium titanate as photocatalyst for degradation of rhodamine B. MRS Advances. 8(23), 1330-5. doi: 10.1557/s43580-023-00685-0.
3 Ata S., Shaheen I., Aslam H., Mohsin I. U., Alwadai N., Huwayz M. A., et al. 2023. Barium and strontium doped La-based perovskite synthesis via sol-gel route and photocatalytic activity evaluation for methylene blue. Results in Physics. 45106235. doi: 10.1016/j.rinp.2023.106235.
4 Iriani Y., Puspita N. F. S., Sandi D. K., Nurosyid F., Suryana R., Fasquelle D. 2024. The Improved Photocatalytic Performance of Strontium Titanate (STO) Powder Induced by Lanthanum Dopants. Iranian Journal of Materials Science and Engineering. 21(4), 1-10. doi: 10.22068/ijmse.3645.
5 Shu-Xiang G. U. I., Xian-Lin D., Chao-Liang M. A. O., Hao L. I., Yang B. A. I., Tao Z. 2015. Fabrication of Barium Strontium Titanate Nanophotocatalysts with Gridding Structures and Their Photocatalytic Activities. Journal of Inorganic Materials. 30(12). doi: 10.15541/jim20150245.
6 Danish M. S. S., Estrella L. L., Alemaida I. M. A., Lisin A., Moiseev N., Ahmadi M., et al. 2021. Photocatalytic Applications of Metal Oxides for Sustainable Environmental Remediation. Metals. 11(1). doi: 10.3390/met11010080.
7 Kumari H., Sonia, Suman, Ranga R., Chahal S., Devi S., et al. 2023. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water Air Soil Pollut. 234(6), 349. Epub 2023/06/05. doi: 10.1007/s11270-023-06359-9. PubMed PMID: 37275322; PubMed Central PMCID: PMCPMC10212744.
8 Vaz T., More A. S., Fernandes J., Gurav S. M. 2021. Influence of Ba Substitution in SrTiO3 Perovskite Studies of Photocatalysis and Catalytic Biginelli Reaction. Journal of Advanced Scientific Research. 12(2), 178 - 84.
9 Lariski F. M., Zangina T., Ndikilar C. E., Mohammed J. 2023. Advances in the synthesis, characterizations and applications of barium titanate. A review. Dutse Journal of Pure and Applied Sciences. 9(3a), 117-36. doi: 10.4314/dujopas.v9i3a.13.
10 Iriani Y., Suherman B., Dianisa Khoirum S., Nurosyid F., Handoko E. 2024. Microstructure, Atomic Bonds, and Dielectric Characteristics of Neodymium (Nd)-doped Barium Titanate. Evergreen. 11(3), 2063-70. doi: 10.5109/7236851.
11 Iriani Y., Suherman B., Sandi D. K., Nurosyid F., Khairuddin, Handoko E., et al. 2024. Structural Modification and Dielectric Property of Bi-Doped BaTiO3 (Ba1-xBixTiO3) Ceramics with co-Precipitation Technique. Integrated Ferroelectrics. 240(1), 140-8. doi: 10.1080/10584587.2023.2296318.
12 Abedi M., Basheer H. S., Lakatos L., Kukovecz A., Konya Z., Gyulavari T., et al. 2024. Influence of Rapid Heat Treatment on the Photocatalytic Activity and Stability of Barium Titanates Against a Broad Range of Pollutants. Molecules. 29(22), 5350. Epub 2024/11/27. doi: 10.3390/molecules29225350. PubMed PMID: 39598741; PubMed Central PMCID: PMCPMC11596716.
13 Jebali S., Meftah M., Mejri C., Ben Haj Amara A., Oueslati W. 2023. Enhancement of Photocatalytic Activity and Microstructural Growth of Cobalt-Substituted Ba1−xCoxTiO3 Heterostructure. ChemEngineering. 7(3), 43. doi: 10.3390/chemengineering7030043.
14 Al-Wasidi A. S., Abdelrahman E. A. 2023. Significant photocatalytic decomposition of malachite green dye in aqueous solutions utilizing facilely synthesized barium titanate nanoparticles. Discov Nano. 18(1), 97. Epub 2023/07/29. doi: 10.1186/s11671-023-03873-x. PubMed PMID: 37507521; PubMed Central PMCID: PMCPMC10382382.
15 Han Y., Wang S., Li M., Gao H., Han M., Yang H., et al. 2023. Strontium-induced phase, energy band and microstructure regulation in Ba1−xSrxTiO3 photocatalysts for boosting visible-light photocatalytic activity. Catalysis Science & Technology. 13(9), 2841-54. doi: 10.1039/d3cy00278k.
16 Bhat D. K., Bantawal H., Shenoy U. S. 2020. Rhodium doping augments photocatalytic activity of barium titanate: effect of electronic structure engineering. Nanoscale Advances. 2(12), 5688-98. Epub 2020/11/05. doi: 10.1039/d0na00702a. PubMed PMID: 36133860; PubMed Central PMCID: PMCPMC9418416.
17 Mohan H., Vadivel S., Shin T. 2023. Sonophotocatalytic water splitting by BaTiO3@SrTiO3 core shell nanowires. Ultrason Sonochem. 101106650. Epub 2023/10/23. doi: 10.1016/j.ultsonch.2023.106650. PubMed PMID: 37866137; PubMed Central PMCID: PMCPMC10623364.
18 Moussi R., Bougoffa A., Trabelsi A., Dhahri E., M.P.F.Graça, Valente M. A., et al. 2021. Effect of Sr-substitution on structure, dielectric relaxation and conduction phenomenon of BaTiO3 perovskite material. Journal of Materials Science: Materials in Electronics. 32(9), 11453-66. doi: 10.1007/s10854-021-05604-3.
19 Elmahgary M. G., Mahran A. M., Ganoub M., Abdellatif S. O. 2023. Optical investigation and computational modelling of BaTiO3 for optoelectronic devices applications. Sci Rep. 13(1), 4761. Epub 2023/03/25. doi: 10.1038/s41598-023-31652-2. PubMed PMID: 36959231; PubMed Central PMCID: PMCPMC10036486.
20 Rohj R. K., Hossain A., Mahadevan P., Sarma D. D. 2021. Band Gap Reduction in Ferroelectric BaTiO3 Through Heterovalent Cu-Te Co-Doping for Visible-Light Photocatalysis. Front Chem. 9682979. Epub 2021/06/11. doi: 10.3389/fchem.2021.682979. PubMed PMID: 34109158; PubMed Central PMCID: PMCPMC8181162.
21 Ramakanth S., James Raju K. C. 2014. Band gap narrowing in BaTiO3 nanoparticles facilitated by multiple mechanisms. Journal of Applied Physics. 115(17), 173507. doi: 10.1063/1.4871776.
22 Zidi Y., Khaldi O., Patru R. E., Leonat L. N., Enculescu M., Toma V., et al. 2025. Experimental and theoretical perspective on band gap modulation in Sr2+ modified BaTiO3 capacitors. Ceramics International. 51(13), 18166-77. doi: 10.1016/j.ceramint.2025.01.591.
23 Nassereddine Y., Benyoussef M., Asbani B., El Marssi M., Jouiad M. 2023. Recent Advances toward Enhanced Photocatalytic Proprieties of BiFeO3-Based Materials. Nanomaterials (Basel). 14(1), 51. Epub 2024/01/11. doi: 10.3390/nano14010051. PubMed PMID: 38202506; PubMed Central PMCID: PMCPMC10780865.
24 Alomair N. A., Al-Aqeel N. S., Alabbad S. S., Kochkar H., Berhault G., Younas M., et al. 2023. The Role of the Ferroelectric Polarization in the Enhancement of the Photocatalytic Response of Copper-Doped Graphene Oxide-TiO2 Nanotubes through the Addition of Strontium. ACS Omega. 8(9), 8303-19. Epub 2023/03/14. doi: 10.1021/acsomega.2c06717. PubMed PMID: 36910964; PubMed Central PMCID: PMCPMC9996589.
25 RaeisianAsl M., Jouybar S., Sarabadani Tafreshi S., Naji L. 2025. Exploring the key features for enhanced SrTiO3 functionality: A comprehensive overview. Materials Today Sustainability. 29(2025), 101072. doi: 10.1016/j.mtsust.2025.101072.
26 Liu S., Yang Y., Hu Y., Rao W. F. 2023. Effect of Strontium Substitution on the Tribocatalytic Performance of Barium Titanate. Materials (Basel). 16(8), 3160. Epub 2023/04/28. doi: 10.3390/ma16083160. PubMed PMID: 37109994; PubMed Central PMCID: PMCPMC10143700.
27 Liu K., Mi L., Wang H., Xiong X., Zhang K., Wang B. 2021. Preparation of Ba1-xSrxTiO3 by the sol-gel assisted solid phase method: Study on its formation mechanism and photocatalytic hydrogen production performance. Ceramics International. 47(15), 22055-64. doi: 10.1016/j.ceramint.2021.04.226.
28 Rashad M. M., Turky A. O., Kandil A. T. 2013. Optical and electrical properties of Ba1−xSrxTiO3 nanopowders at different Sr2+ ion content. Journal of Materials Science: Materials in Electronics. 24(9), 3284-91. doi: 10.1007/s10854-013-1244-9.
29 Ahn H., Lee E., Cho Y., Bae D., Park H., Yang J., et al. 2021. Ferroelectric Transition in Sr- and W-Doped BaTiO3 Solid Solutions. Applied Sciences. 11(15), 6760. doi: 10.3390/app11156760.
30 Kacimi-Naciri H., Rguiti M., Mabrouk A., Courtois C., Ben Achour M. A., Lorgouilloux Y., et al. 2025. DFT-based and experimental study on Sr-doped BaTiO3: Impacts on piezoelectric and ferroelectric performance. Ceramics International. 51(17), 23801-13. doi: 10.1016/j.ceramint.2025.03.069.
31 Devi L. R., Naorem B., Choudhary A., Sharma H. B. 2024. Influence of Sr2+ ion content on the structural and electrical properties of Ba1-xSrxTiO3 nanopowders. Journal of Materials Science: Materials in Electronics. 35(32). doi: 10.1007/s10854-024-13841-5.
32 Hussein M. M., Saafan S. A., Abosheiasha H. F., Kamal A. A., Mahmoud A. E.-r., Zhou D., et al. 2023. Structural and dielectric characterization of synthesized nano-BSTO/PVDF composites for smart sensor applications. Materials Advances. 4(22), 5605-17. doi: 10.1039/d3ma00437f.
33 Zheng Y., Feng G., Chen C., Jiang F., Zhao C., Yuan Q., et al. 2025. Improved piezo-photocatalysis performance of Ba1-xSrxTiO3 nanopowders via synergistically optimizing phase ratio, defects and polarization. Journal of Alloys and Compounds. 1011(2025), 178348. doi: 10.1016/j.jallcom.2024.178348.
34 Malik J., Kumar S., Srivastava P., Bag M., Mandal T. K. 2021. Cation disorder and octahedral distortion control of internal electric field, band bending and carrier lifetime in Aurivillius perovskite solid solutions for enhanced photocatalytic activity. Materials Advances. 2(14), 4832-42. doi: 10.1039/d1ma00304f.
35 Dhole S., Chen A., Nie W., Park B., Jia Q. 2022. Strain Engineering: A Pathway for Tunable Functionalities of Perovskite Metal Oxide Films. Nanomaterials (Basel). 12(5). Epub 2022/03/11. doi: 10.3390/nano12050835. PubMed PMID: 35269323; PubMed Central PMCID: PMCPMC8912649.
36 Hu Y., Pan Y., Wang Z., Lin T., Gao Y., Luo B., et al. 2020. Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer. Nature Communications. 11(1), 2129. Epub 2020/05/03. doi: 10.1038/s41467-020-15993-4. PubMed PMID: 32358565; PubMed Central PMCID: PMCPMC7195485.
37 Bantawal H., Shenoy U. S., Bhat D. K. 2018. Tuning the Photocatalytic Activity of SrTiO3 by Varying the Sr/Ti Ratio: Unusual Effect of Viscosity of the Synthesis Medium. The Journal of Physical Chemistry C. 122(34), 20027-33. doi: 10.1021/acs.jpcc.8b06514.
38 Wang Y. Effect of Polar Structure on Photocatalytic Properties of Oxide Powders and Films. London: Queen Mary, University of London; 2018.
39 Saravanan R., Mangaiyarkkarasi J. 2015. Synthesis and analysis of electron density distribution in Ba1−xSrxTiO3 ceramics. Journal of Materials Science: Materials in Electronics. 27(3), 2523-33. doi: 10.1007/s10854-015-4053-5.
Refbacks
- There are currently no refbacks.















