Characterization and Cross-Sectional Modeling of the Newly Identified Rawup Fault Based on Relocated Hypocenters and Focal Mechanism in South Sulawesi
Abstract
This study presents an integrated seismotectonic analysis combining earthquake hypocenter relocation and P-wave polarity–based focal mechanism modeling to investigate the microseismic cluster in the Maros–Pangkep region, South Sulawesi. Using seismic data recorded by the BMKG network between 2019 and 2024, a total of 191 events were successfully relocated through the double-difference (HypoDD) algorithm, achieving a significant reduction in RMS residuals. The relocated hypocenters delineate a coherent northwest–southeast–trending fault plane with a strike of approximately 260° and a dip of 7–9°, consistent with a dextral strike-slip mechanism exhibiting minor oblique components. Integration with polarity-derived focal mechanisms confirms a consistent stress orientation compatible with regional compression along the Walanae Fault System. This alignment suggests the presence of a previously unmapped active structure, herein referred to as the Rawup Fault, accommodating local stress redistribution between carbonate and volcanic–clastic units. The findings advance the understanding of active deformation in low-seismicity, karst-dominated terrains and demonstrate the value of combining relocation and focal mechanism analyses for detecting hidden faults. These results provide new insights into the tectonic evolution and seismic hazard potential of the Maros-Pangkep.
Keywords
Full Text:
PDFReferences
1 Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., Meilano, I., Triyoso, W., Rudiyanto, A., Hidayati, S., Ridwan, M., Hanifa, N. R., & Syahbana, A. J. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra, 36(1_suppl). https://doi.org/10.1177/8755293020951206.
2 Perston, Y. L., Sumantri, I., Hakim, B., Oktaviana, A. A., & Brumm, A. (2020). Excavation report for leang rakkoe: a new toalean site with engraved art in the bomboro valley, maros regency, south sulawesi. Jurnal walennae, 18(1). https://doi.org/10.24832/wln.v18i1.427.
3 Purba, J., Priadi, R., Frando, M., & Pertiwi, I. (2025). The Purpri Fault: A newly identified active fault in East Kolaka, Indonesia, based on HypoDD and DInSAR. Geoloski Anali Balkanskoga Poluostrva, 00, 5–5. https://doi.org/10.2298/GABP250417005P.
4 Jaya, A., & Nishikawa, O. (2013). Paleostress reconstruction from calcite twin and fault-slip data using the multiple inverse method in the East Walanae fault zone: Implications for the Neogene contraction in South Sulawesi, Indonesia. Journal of Structural Geology, 55. https://doi.org/10.1016/j.jsg.2013.07.006.
5 Jaya, A., Nishikawa, O., & Jumadil, S. (2023). Paleoseismic Analysis of the Walanae Fault Zone in South Sulawesi, Indonesia. Indonesian Journal on Geoscience, 10(2). https://doi.org/10.17014/ijog.10.2.215-227.
6 Justia, M., Hiola, M. F. H., & Febryana S, N. B. (2018). Gravity anomaly to identify Walanae fault using second vertical derivative method. Journal of Physics: Theories and Applications, 2(1). https://doi.org/10.20961/jphystheor-appl.v2i1.29008.
7 Sarsito, D. A., Susilo, S., Rudyawan, A., Muhammad, N. A., Andreas, H., & Pradipta, D. (2019). Walanae fault kinematic deduced from geometric geodetic gnss GPS monitoring. E3S Web of Conferences, 94. https://doi.org/10.1051/e3sconf/20199404008.
8 Safani, J., Ibrahim, K., Deni, W., Rubaiyn, A., Firdaus, F., & Harisma, H. (2023). Interpreting structural configuration of the Sengkang Basin of Indonesia using edge detection and 3-D Euler deconvolution to satellite gravity data. Turkish Journal of Earth Sciences, 32(7). https://doi.org/10.55730/1300-0985.1881.
9 Suyono, S. (2010). Stratigraphy and Tectonics of the Sengkang Basin, South Sulawesi. Indonesian Journal on Geoscience. https://doi.org/10.17014/ijog.vol5no1.20101.
10 PuSGeN. (2024). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2024 [Map of Indonesia Earthquake Sources and Hazards in 2024- in Indonesian]. PUPR Press, 515 pp.
11 Wilson, M. E. J., Bosence, D. W. J., & Limbong, A. (2000). Tertiary syntectonic carbonate platform development in Indonesia. Sedimentology, 47(2). https://doi.org/10.1046/j.1365-3091.2000.00299.x.
12 Huntley, J., Aubert, M., Oktaviana, A. A., Lebe, R., Hakim, B., Burhan, B., Aksa, L. M., Geria, I. M., Ramli, M., Siagian, L., Brand, H. E. A., and Brumm, A. 2021. The effects of climate change on the Pleistocene rock art of Sulawesi. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87923-3.
13 Wulur, K., H, C., Junaedi, S., Susanto, A., Purba, J., & Priadi, R. (2025). Hypocenter relocation to identify hidden faults and their environmental implications in the karst region of Maros-Pangkep, South Sulawesi. Journal Of Degraded and Mining Lands Management, 12(5), 8663–8676. https://doi.org/10.15243/jdmlm.2025.125.8663.
14 Diehl, T., Kissling, E., Herwegh, M., & Schmid, S. M. (2021). Improving absolute hypocenter accuracy with 3d pg and sg body‐wave inversion procedures and application to earthquakes in the central alps region. Journal of Geophysical Research: Solid Earth, 126(12). https://doi.org/10.1029/2021jb022155.
15 Lomax, A. and Savvaidis, A. (2021). High‐precision earthquake location using source‐specific station terms and inter‐event waveform similarity. Journal of Geophysical Research: Solid Earth, 127(1). https://doi.org/10.1029/2021jb023190.
16 Trugman, D. T., Chamberlain, C. J., Savvaidis, A., & Lomax, A. (2022). Growclust3d.jl: a julia package for the relative relocation of earthquake hypocenters using 3d velocity models. Seismological Research Letters, 94(1), 443-456. https://doi.org/10.1785/0220220193.
17 Waldhauser, F., & Ellsworth, W. L. (2000). A Double-difference Earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6): 1353–1368. https://doi.org/10.1785/0120000006.
18 Waldhauser, F. (2001). Hypodd-a program to compute double-difference hypocenter locations. Open-File Report. https://doi.org/10.3133/ofr01113.
19 Supendi, P., Nugraha, A. D., Widiyantoro, S., Abdullah, C. I., Puspito, N. T., Palgunadi, K. H., Daryono, D., & Wiyono, S. H. (2019). Hypocenter relocation of the aftershocks of the Mw 7.5 Palu earthquake (September 28, 2018) and swarm earthquakes of Mamasa, Sulawesi, Indonesia, using the BMKG network data. Geoscience Letters, 6(1): 1-11. https://doi.org/10.1186/s40562-019-0148-9.
20 Supendi, P., Nugraha, A. D., Widiyantoro, S., Pesicek, J. D., Thurber, C. H., Abdullah, C. I., Daryono, D., Wiyono, S. H., Shiddiqi, H. A., & Rosalia, S. (2020). Relocated aftershocks and background seismicity in eastern Indonesia shed light on the 2018 Lombok and Palu earthquake sequences. Geophysical Journal International, 221(3): 1845–1855. https://doi.org/10.1093/gji/ggaa118.
21 Cirillo, D., Totaro, C., Lavecchia, G., Orecchio, B., de Nardis, R., Presti, D., Ferrarini, F., Bello, S., & Brozzetti, F. (2022). Structural complexities and tectonic barriers controlling recent seismic activity in the Pollino area (Calabria-Lucania, southern Italy)-constraints from stress inversion and 3D fault model building. Solid Earth, 13(1). https://doi.org/10.5194/se-13-205-2022.
22 Zhang, Y., Fadugba, O. I., Powell, C. A., Horton, S. P., & Langston, C. A. (2022). A new madrid seismic zone fault system model from relative event locations and application of optimal anisotropic dynamic clustering. Journal of Geophysical Research: Solid Earth, 127(10). https://doi.org/10.1029/2022jb024194.
23 Shelly, D. R., Skoumal, R. J., & Hardebeck, J. L. (2022). s/p amplitude ratios derived from single-component seismograms and their potential use in constraining focal mechanisms for microearthquake sequences. The Seismic Record, 2(2), 118-126. https://doi.org/10.1785/0320220002.
24 Vallée, M., Charléty, J., Ferreira, A. M. G., Delouis, B., & Vergoz, J. (2010). Scardec: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution. Geophysical Journal International, 184(1), 338-358. https://doi.org/10.1111/j.1365-246x.2010.04836.x.
25 Barth, A., Wenzel, F., & Giardini, D. (2007). Frequency sensitive moment tensor inversion for light to moderate magnitude earthquakes in eastern africa. Geophysical Research Letters, 34(15). https://doi.org/10.1029/2007gl030359.
26 Cesca, S., Heimann, S., Stammler, K., & Dahm, T. (2010). Automated procedure for point and kinematic source inversion at regional distances. Journal of Geophysical Research: Solid Earth, 115(B6). https://doi.org/10.1029/2009jb006450.
27 Zhang, X., Zhang, M., & Tian, X. (2021). Real‐time earthquake early warning with deep learning: application to the 2016 m 6.0 central apennines, italy earthquake. Geophysical Research Letters, 48(5). https://doi.org/10.1029/2020gl089394.
28 Yao, Q., Wang, D., Fang, L., & Mori, J. (2019). Rapid estimation of magnitudes of large damaging earthquakes in and around japan using dense seismic stations in china. Bulletin of the Seismological Society of America, 109(6), 2545-2555. https://doi.org/10.1785/0120190107.
29 Cheng, Y., Allen, R. M., & Taira, T. (2023). A New Focal Mechanism Calculation Algorithm (REFOC) Using Inter-Event Relative Radiation Patterns: Application to the Earthquakes in the Parkfield Area. Journal of Geophysical Research: Solid Earth, 128(3). https://doi.org/10.1029/2022JB025006.
30 Serhalawan, Y., & Chen, P.-F. (2024). Seismotectonics of Sulawesi, Indonesia. Tectonophysics, 883, 230366. https://doi.org/https://doi.org/10.1016/j.tecto.2024.230366.
31 Pasari, S., Simanjuntak, A. V. H., Neha, & Sharma, Y. (2021). Nowcasting earthquakes in Sulawesi Island, Indonesia. In Geoscience Letters (Vol. 8, Issue 1). https://doi.org/10.1186/s40562-021-00197-5.
32 Huang, H. and Wang, Y. (2022). Seismogenic structure beneath the northern longitudinal valley revealed by the 2018–2021 hualien earthquake sequences and 3-d velocity model. Terrestrial, Atmospheric and Oceanic Sciences, 33(1). https://doi.org/10.1007/s44195-022-00017-z.
33 Bratt, S. R., and W. Nagy. (1991). The LocSAT Program, Science Applications International Corporation (SAIC), San Diego, California.
34 Hanka, W., Saul, J., Weber, B., Becker, J., & Harjadi, P. (2010). Real-time earthquake monitoring for tsunami warning in the Indian Ocean and beyond. Natural Hazards and Earth System Science, 10(12). https://doi.org/10.5194/nhess-10-2611-2010.
35 Kennett, B. L. N., & Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geo-physical Journal International, 105(2). https://doi.org/10.1111/j.1365-246X.1991.tb06724.x.
36 Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1). https://doi.org/10.1111/j.1365-246X.1995.tb03540.x.
37 Jackson, I. (1998). Elasticity, composition and temperature of the earth’s lower mantle: a reappraisal. Geophysical Journal International, 134(1), 291-311. https://doi.org/10.1046/j.1365-246x.1998.00560.x.
38 Cobden, L., Goes, S., Cammarano, F., & Connolly, J. A. D. (2008). Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity. Geophysical Journal International, 175(2), 627-648. https://doi.org/10.1111/j.1365-246x.2008.03903.x.
39 Godwin, H., Waszek, L., & Deuss, A. (2018). Measuring the seismic velocity in the top 15 km of earth’s inner core. Physics of the Earth and Planetary Interiors, 274, 158-169. https://doi.org/10.1016/j.pepi.2017.11.010.
40 Alamri, A., Rodgers, A., & Alkhalifah, T. (2008). Improving the level of seismic hazard parameters in saudi arabia using earthquake location. Arabian Journal of Geosciences, 1(1), 1-15. https://doi.org/10.1007/s12517-008-0001-5.
41 Waldhauser, F., & Ellsworth, W. L. (2000). A Double-difference Earthquake location algorithm: Method and application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6): 1353–1368. https://doi.org/10.1785/0120000006.
42 Waldhauser, F. (2001). Hypodd-a program to compute double-difference hypocenter locations. Open-File Report. https://doi.org/10.3133/ofr01113.
43 Deemer, W. L., & Olkin, I. (1951). The Jacobians of certain matrix transformations use-ful in multivariate analysis. Biometrika, 38(3–4). https://doi.org/10.1093/biomet/38.3-4.345.
44 Díaz-García, J. A., & Gutiérrez-Jáimez, R. (2009). Jacobians of certain transformations of singular matrices. Applica-tiones Mathematicae, 36(2). https://doi.org/10.4064/am36-2-10.
45 de Lathauwer, L., de Moor, B., & Vandewalle, J. (2000). A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4). https://doi.org/10.1137/S0895479896305696.
46 Yutaka, F., Hasemi, A., & Yoshimoto, K. (2008). The detailed hypocenter distribution around the active fault. Zisin (Journal of the Seismological Society of Japan. 2nd Ser.), 61(1), 1-10. https://doi.org/10.4294/zisin.61.1_1.
47 Kilaru, S., Kumar, S., & Dixit, M. M. (2019). Faults plane orientation deduced from the high dense network of short duration data with relocation of hypocenters: koyna-warna region, western india. Open Journal of Earthquake Research, 08(03), 191-200. https://doi.org/10.4236/ojer.2019.83011.
48 Piegari, E., Camanni, G., Mercurio, M., & Marzocchi, W. (2024). Illuminating the hierarchical segmentation of faults through an Unsupervised Learning Approach applied to clouds of earthquake hypocenters. Earth and Space Science, 11, e2023EA003267. https://doi.org/10.1029/2023EA003267.
49 Lemaire, E., Mreyen, A., Dufresne, A., & Havenith, H. (2020). Analysis of the influence of structural geology on the massive seismic slope failure potential supported by numerical modelling. Geosciences, 10(8), 323. https://doi.org/10.3390/geosciences10080323.
50 Sukamto R. (1982). Geological map of the Pangkajene and western part of Watampone Quadrangles, Sulawesi, scale 1:250,000. Geological Research and Development Centre, Bandung, Indonesia.
51 Berry, R. F., & Grady, A. E. (1987). Mesoscopic structures produced by Plio-Pleistocene wrench faulting in South Sulawesi, Indonesia. Journal of Structural Geology, 9(5–6). https://doi.org/10.1016/0191-8141(87)90141-6.
52 Muzani, M., Nabilla, L., Pratiwi, R. V. E., & Tan, F. (2023). South Sulawesi Arm’s Evolution in the Past 50 million years and Its Impacts on the Geology and Geomorphology. Geology, Ecology, and Landscapes, 9(1), 67–79. https://doi.org/10.1080/24749508.2023.2165627.
53 van Leeuwen, T. M., Susanto, E. S., Maryanto, S., Hadiwisastra, S., Sudijono, Muhardjo, & Prihardjo. (2010). Tectonostratigraphic evolution of Cenozoic marginal basin and continental margin successions in the Bone Mountains, Southwest Sulawesi, Indonesia. Journal of Asian Earth Sciences, 38(6). https://doi.org/10.1016/j.jseaes.2009.11.005.
54 Zhafirah, N. A., HAEDAR, N., SENTOSA, S., & Gani, F. (2024). Micromorphology characterization of crystal calcium carbonate and exopolysaccharides quantification carbonatogenic bacterial ltp4-d isolated from historical painting of maros-pangkep karst area, indonesia. Biodiversitas Journal of Biological Diversity, 25(5). https://doi.org/10.13057/biodiv/d250532.
55 Agliardi, F., Dobbs, M. R., Zanchetta, S., & Vinciguerra, S. (2017). Folded fabric tunes rock deformation and failure mode in the upper crust. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-15523-1.
56 Lloyd, G. E., Halliday, J. M., Butler, R. W. H., Casey, M., Kendall, J. M., Wookey, J., & Mainprice, D. (2011). From crystal to crustal: Petrofabric-derived seismic modelling of regional tectonics. Geological Society Special Publication, 360(1). https://doi.org/10.1144/SP360.4.
57 Yamato, P., Duretz, T., & Angiboust, S. (2019). Brittle/ductile deformation of eclogites: insights from numerical models. Geochemistry, Geophysics, Geosystems, 20(7), 3116-3133. https://doi.org/10.1029/2019gc008249.
58 Li, Q. and Xu, G. (2012). Tidal triggering of earthquakes in longmen shan region: the relation to the fold belt and basin structures. Earth, Planets and Space, 64(9), 771-776. https://doi.org/10.5047/eps.2011.06.037.
59 Yan, X., Zhang, B., Wang, G., Yang, T., & Chen, J. (2023). Coseismic frictional heating with concomitant hydrothermal fluid circulation revealed by rock magnetic properties of fault rocks from the rupture of the 2008 wenchuan earthquake, china. Geochemistry, Geophysics, Geosystems, 24(11). https://doi.org/10.1029/2023gc011223.
60 Nonomura, A., Hasegawa, S., Abe, T., Mukoyama, S., & Kaneda, Y. (2021). Validation of an index for susceptibility to earthquake-induced landslides derived from helicopter-borne electromagnetic resistivity and digital elevation data. Geosciences, 11(2), 95. https://doi.org/10.3390/geosciences11020095.
61 Maeda, S., Matsuzawa, T., Toda, S., Yoshida, K., & Katao, H. (2018). Complex microseismic activity and depth-dependent stress field changes in wakayama, southwestern japan. Earth, Planets and Space, 70(1). https://doi.org/10.1186/s40623-018-0788-6.
62 Li, B. Q. and Du, J. (2020). A methodology for unstructured damped stress inversion of microseismic focal mechanisms: application to the vaca muerta formation, argentina. Geophysics, 85(2), KS39-KS50. https://doi.org/10.1190/geo2019-0275.1.
- Lee, S., Wong, T., Lin, T., & Liu, T. (2019). Complex triggering supershear rupture of the 2018 mw 7.5 palu, indonesia, earthquake determined from teleseismic source inversion. Seismological Research Letters, 90(6), 2111-2120. https://doi.org/10.1785/0220190111.
- Makhnenko, R. and Podladchikov, Y. (2018). Experimental poroviscoelasticity of common sedimentary rocks. Journal of Geophysical Research: Solid Earth, 123(9), 7586-7603. https://doi.org/10.1029/2018jb015685.
- Besharatinezhad, A., Khodabandeh, M. A., Rozgonyi-Boissinot, N., & Török, Á. (2022). The effect of water saturation on the ultrasonic pulse velocities of different stones. Periodica Polytechnica Civil Engineering. https://doi.org/10.3311/ppci.18701.
- Baud, P., Schubnel, A., Heap, M. J., & Rolland, A. (2017). Inelastic compaction in high‐porosity limestone monitored using acoustic emissions. Journal of Geophysical Research: Solid Earth, 122(12), 9989. https://doi.org/10.1002/2017jb014627.
- Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin - Seismological Society of America, 84(4). https://doi.org/10.1785/bssa0840040974.
- Leonard, M. (2010). Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, 100(5 A). https://doi.org/10.1785/0120090189.
- Stirling, M., Goded, T., Berryman, K., & Litchfield, N. (2013). Selection of earthquake scaling relationships for seismic-hazard analysis. Bulletin of the Seismological Society of America, 103(6). https://doi.org/10.1785/0120130052.
- Purba, J., Restele, L.O., Hadini, L.O., Usman, I., Hasria, H. & Harisma, H. (2024). Spatial study of seismic hazard using classical probabilistic seismic hazard analysis (PSHA) method in the Kendari city area. Indonesian Physical Review, 7 (3): 300–318. https://doi.org/10.29303/ipr.v7i3.325.
Refbacks
- There are currently no refbacks.















