Effect of Coating Superparamagnetic Iron Oxide Nanoparticles with Oleic Acid and PEG on Their Properties For Magnetic Targeting Applications: A Review

Firyal Dhiya Khansa Arianna, Togar Saragi, Risdiana Risdiana

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) with all their unique properties have great potential in biomedical applications, including cancer treatment using targeted drug delivery systems and magnetic hyperthermia therapy. However, the stability of nanoparticles and their biocompatibility are major challenges in the success of these applications. Coating nanoparticles with oleic acid and polyethylene glycol (PEG) is often used to improve their dispersion stability and biocompatibility. In this review, we will discuss how the properties of SPION such as colloidal stability, magnetic properties, hyperthermia properties, drug loading, and drug release capabilities are improved when SPION is coated with oleic acid and PEG. It was found that in general, coating using oleic acid and PEG would improve the properties of SPION, such as increasing the hydrodynamic diameter and zeta potential values, and decreasing the polydispersity index and coercive filed values, making it more suitable for biomedical applications. This review aims to provide a thorough understanding of coating strategies to optimize SPION performance in magnetic targeting applications, and identify challenges and opportunities for future development

Keywords

SPION; oleic acid; PEG; targeted drug delivery; magnetic hyperthermia

Full Text:

PDF

References

Khan, I., Saeed, K. 2019. Nanoparticles: Properties, applications and toxicities. Arabian J. Chem., 12(7), 908-931.

Vangijzegem, T., Lecomte, V., Ternda, I., et al. 2023. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics, 15, 236.

Dobson, J. 2006. Magnetic nanoparticles for drug delivery. Drug Dev. Res., 67(1), 55-60.

Choumoucka, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R., Hubalek, J. 2010. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res., 62(2), 144-149.

Wallyn, J., Anton, N., Vandamme, T. F. 2019. Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications – A review. Pharmaceutics, 11(11), 601.

Wahajuddin, Arora, S. 2012. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carrier. Int. J. Nanomed., 7, 34450-3471

Mohammad, F., Al-Lohedan, H. A., Joshi, P. B., et al. 2022. Engineered superparamagnetic iron oxide nanoparticles for externally controlled hyperthermia, drug delivery, and therapeutic toxicity. Precis. Nanomed., 5(3), 930-949.

Umut, E. 2013. Surface Modification of Nanoparticles Used in Biomedical Applications. Modern Surface Engineering Treatments. Online: https://www.intechopen.com/chapters/44855.

Doan, L., Nguyen, L. T., Nguyen, N. T. N. 2023. Modifying superparamagnetic iron oxides nanoparticles for doxorubicin delivery carriers: a review. J. Nanopart. Res., 25(73).

Ganapathe, L. S., Mohamed, M. A., Yunus, R. M., Berhanuddin, D. D. 2020. Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry, 6(4), 68.

Ioncica, M. C., Bandyopadhyay, S., Bali, N., Socoliuc, V., Bernad, S. I. 2023. Investigation of Cubic and Spherical IONPs’ Rheological Characteristics and Aggregation Patterns from the Perspective of Magnetic Targeting. Magnetochemistry, 9(4).

Kovrigina, E., Polaetaeva, Y., Zheng, Y., Chubarov, A., Dmitrienko, E. 2023. Nylon-6-Coated Doxorubicin-Loaded Magnetic Nanoparticles and Nanocapsules for Cancer Treatment. Magnetochemistry, 9(4).

Kovrigina, E., Chubarov, A., Dmitrienko, E. 2022. High Drug Capacity Doxorubicin-Loaded Iron Oxide Nanocomposites for Cancer Therapy. Magnetochemistry, 8(5), (2022).

Namikuchi, E. A., Gaspar, R. D. L., da Silva, D. S., Raimundo, I. M., Mazali, I. O. 2021. PEG size effect and its interaction with Fe3O4 nanoparticles synthesized by solvothermal method: Morphology and effect of pH on the stability. Nano Express, 2(2).

Heydaryan, K., Kashi, M. A., Montazer, A. H. 2022. Tuning specific loss power of CoFe2O4 nanoparticles by changing surfactant concentration in a combined co-precipitation and thermal decomposition method. Ceram. Int, 48(12), 16967 – 16976.

Andhare, D. D., Patade, S. R., Khedkar, M. V., Nawpute, A. A., Jadhav, K. M. 2022, Intensive analysis of uncoated and surface modified Co-Zn nanoferrite as a heat generator in magnetic fluid hyperthermia applications. Appl. Phys. A:Mater. Sci. Process, 128(6).

Dabbagh, A., Hedayatnasab, Z., Karimian, H., et al. 2019. Polyethylene glycol-coated porous nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia conidition. Int. J. Hyperthermia, 36(1), 104-114.

Hemben, A., Chianella, I., Leighton, G. J. T. 2021. Surface engineered iron oxide nanoparticles generated by inert gas condensation for biomedical applications. Bioengineering, 8(3).

da Silva, P., de Moraes, C. 2016. Iron Oxide Nanoparticles Coated with Polymer Derived from Epoxidized Oleic Acid and Cis-1,2-Cyclohexanedicarboxylic Anhydride: Synthesis and Characterization. J. Mater. Sci. Eng., 5(3).

Darwish, M. S. A., Peuker, U., Kunz, U., Turek, T. 2011. Bi-layered polymer-magnetite core/shell particles: Synthesis and characterization. J. Mater. Sci., 46(7), 2123-2134.

Gyergyek, S., Makovec, D., Drofenik, M. 2011. Colloidal stability of oleic- and ricinoleic-acid-coated magnetic nanoparticles in organic solvents. J. Colloid Interface Sci., 354(2), 498-505.

Jadhav, N. V., Prasad, A. I., Kumar, A., Mishra, R., Dhara, S., et al. 2013. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surf., B, 108, 158-168.

Zhang, L., He, R., Gu, H. C. 2006. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci., 253(5), 2611-2617.

Nalle, F. C., Wahid, R., Wulandari, I. O., Sabarudin, A. 2019. Synthesis and characterization of magnetic Fe3O4 nanoparticles using oleic acid as stabilizing agent. Rasayan J. Chem., 12(1), 4-21.

Barnakov, Y. A., Idehenre, I. U., Basun, S. A., Tyson, T. A., Evans, D. R. 2019. Uncovering the mystery of ferroelectricity in zero dimensional nanoparticles. Nanoscale Adv., 1(2), 664-670.

Leuner, C., Dressman, J. 2000. Improving drug solutibility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm., 50(1), 47-60.

Zhang, Y., Kohler, N., Zhang, M. 2002. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23(7), 1553-1561.

Gupta, A. K., Gupta, M. 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), 3995-4021.

Yallapu, M. M., Foy, S. P., Jain, T. K., Labhasetwar, V. 2010. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm. Res., 27(11), 2283-2295.

Abdullah, F. Z., Ma’amor, A., Daud, N. A., Hamid, S. B. A. 2017. Selective synthesis of peg-monoester using cesium heteropoly acid as heterogeneous catalyst. Quim. Nova, 40(5), 506-512.

Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J., Jallet, P. 1996. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J. Microencapsulation, 13(3), 245-255.

Maguire, C. M., Rosslein, M., Wick, P., Prina-Mello, A. 2018. Characterisation of particles in solution – a perspective on light scattering and comparative technologies. Sci. Technol. Adv. Mater., 19(1), 732-745.

Honary, S., Zahir, F. 2013. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems – A Review (Part 1). Trop. J. Pharm. Res., 12(2).

Kolhatkar, A. G., Jamison, A. C., Litvinov, D., Wilson, R. C., Lee, T. R. 2013. Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci., 14(8), 15977-16009.

Kotitz, R., Weitschies, W., Trahms, L., Semmler, W. 1999. Investigation of Brownian and Neel Relaxation in Magnetic Fluids. J. Magn. Magn. Mater., 201, 102-104.

Refbacks

  • There are currently no refbacks.