Klasifikasi Tindakan Korektif Iregularitas dengan Penerapan Algoritma CART pada Perusahaan Logistik
Abstract
Abstrak
Perusahaan logistik memiliki peran penting dalam menjaga kelancaran rantai pasok dan distribusi barang. Namun, sering kali terjadi iregularitas dalam proses pengiriman yang dapat menghambat operasional dan menurunkan kualitas layanan. Klasifikasi tindakan korektif iregularitas bertujuan untuk mengklasifikasikan dan memprediksi tindakan korektif yang dibutuhkan dalam melakukan evaluasi iregularitas menggunakan algortima Classification and Regression Tree (CART) dan metodologi CRISP-DM untuk tahapan penelitian. Data historis iregularitas dikumpulkan dari sebuah perusahaan logistik dan diolah. Model CART diterapkan dengan berbagai parameter tuning untuk mendapatkan performa terbaik. Hasil evaluasi menunjukkan bahwa model yang dibangun memiliki akurasi 90%, precision 0.97, recall 0.90, dan F1-score 0.92. Penelitian ini membuktikan bahwa algoritma CART cukup baik dalam mengklasifikasikan tindakan korektif dan memprediksi tindakan yang tepat. Sistem yang dihasilkan dapat membantu meningkatkan efisiensi operasional perusahaan logistik.
===================================================
Abstract :
Logistics companies play a crucial role in ensuring the smooth flow of the supply chain and distribution of goods. However, irregularities in the delivery process often occur, which can disrupt operations and reduce service quality. The classification of corrective actions for irregularities aims to classify and predict the corrective actions needed in evaluating irregularities using the Classification and Regression Tree (CART) algorithm and the CRISP-DM methodology for the research phases. Historical irregularity data was collected from a logistics company and processed. The CART model was applied with various parameter tuning to achieve optimal performance. Evaluation results show that the developed model has an accuracy of 90%, with precision, recall, and F1-score values to be specified. This study demonstrates that the CART algorithm is effective in classifying corrective actions and predicting the appropriate actions. The resulting system can help improve the operational efficiency of the logistics company.
Keywords
Full Text:
PDFReferences
[1] N. K. Putri, “Sistem Penanganan Iregularitas Dalam Proses Kirimanpos Pada Pos Indonesia Regioanal IV Semarang,” 2022.
[2] N. Kerdprasop, K. Chansilp, K. Kerdprasop, and P. Chuaybamroong, “Anomaly Detection with Machine Learning Technique to Support Smart Logistics,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2019, pp. 461–472. doi: 10.1007/978-3-030-24289-3_34.
[3] S. Firmansyah, J. Gaol, and S. B. Susilo, “Comparison of SVM and Decision Tree Classifier with Object Based Approach for Mangrove Mapping to Sentinel-2B Data on Gili Sulat, Lombok Timur,” Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan, vol. 9, no. 3, pp. 746–757, 2019, doi: 10.29244/jpsl.9.3.746-757.
[4] N. H. Purnomo, B. Pamungkas, and C. Juliane, “Penerapan Algoritma C4.5 Untuk Klasifikasi Tren Pelanggaran Kendaraan Angkutan Barang dengan Metode CRISP-DM,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 1, p. 30, Jan. 2023, doi: 10.30865/mib.v7i1.5247.
[5] A. Aribowo, R. Kuswandhie, and Y. Primadasa, “Implementasi Algoritma CART Dalam Penentuan Implementation of the CART Algorithm in Determining the Eligibility of PKH Aid Recipients in Ngadirejo Village,” Cogito Smart Journal |, vol. 7, no. 1, 2021.
[6] A. N. Ikhsan, A. N. Fadilah, and A. D. Iftinani, “Performance Comparison of Decision Tree J48, CART, and Naïve Bayes Algorithms for Predicting Chronic Kidney Disease,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 7, no. 1, p. 64, Nov. 2023, doi: 10.24014/ijaidm.v7i1.26472.
[7] H. D. Darmawan, D. Yuniarti, and Y. N. Nasution, “Klasifikasi Lama Masa Studi Mahasiswa Menggunakan Perbandingan Metode Algoritma C.45 dan Algoritma Classification and Regression Tree,” Jurnal EKSPONENSIAL, vol. 8, no. 2, 2017.
[8] Nurahman and R. Sumanti, “Klasifikasi Data Tingkat Kerawanan Kebakaran Menggunakan Algoritma CART,” Jurnal Informatika & Rekayasa Elektronika), vol. 7, no. 1, 2024, [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/jire
[9] M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” Journal of Applied Informatics and Computing (JAIC), vol. 5, no. 2, p. 103, 2021, [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
[10] E. Novalia and A. Voutama, “Prediction of Rice Field Planted Area with CRISP-DM Using Classification and Regression Tree (Cart) Algorithms,” SYSTEMATICS, vol. 5, no. 1, p. 578, 2023.
[11] Somadi and A. Muzakki Ijlal, “Proposed Repair to Minimize the Difference of Delivery Items Using Fishbone and 5W + 1H,” Jurnal Logistik Indonesia, vol. 5, no. 2, pp. 174–182, 2021, [Online]. Available: http://ojs.stiami.ac.id
[12] A. Amrullah, I. Purnamasari, B. Nurina Sari, and A. Voutama, “Analisis Cluster Faktor Penunjang Pendidikan Menggunakan Algoritma K-Means (Studi Kasus: Kabupaten Karawang),” Jurnal Informatika & Rekayasa Elektronika), vol. 5, no. 2, pp. 244–252, 2022, [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/jirehttp://e-journal.stmiklombok.ac.id/index.php/jire
[13] R. Wisnu Nugraha and R. Hadiansah, “Penerapan Data Mining Pada Data Transaksi Distribusi Untuk Menganalisa Penempatan Buku Menggunakan Algoritma Apriori (Studi Kasus PT.Duta Bandung),” Jurnal Teknologi dan Informasi (JATI) , vol. 7, no. 1, pp. 29–36, 2017.
[14] A. Saddam, “[Python] Streamlit for Data Mining Visualization,” Medium. Accessed: May 26, 2025. [Online]. Available: https://medium.com/learning-about-data-mining/streamlit-for-data-mining-visualization-4a3efec1455b
[15] A. Tholib, Buku Refrensi Implementasi Algoritma Machine Learning Berbasis Web dengan Framework Streamlit, 1st ed. Probolinggo: Pustaka Nurja, 2023. [Online]. Available: https://pustakanurja.unuja.ac.id
Refbacks
- There are currently no refbacks.