Optimasi Analisis Sentimen Ulasan Sunscreen di E-Commerce Menggunakan Algoritma SVM dan SMOTE

Ayi Andini, Nining Rahaningsih, Raditya Danar Dana, Cep Lukman Rohmat

Abstract

Abstrak : 

Analisis sentimen terhadap ulasan pengguna di e-commerce membantu produsen memahami kepuasan pelanggan. Penelitian ini bertujuan untuk menganalisis sentimen ulasan produk sunscreen di Facetology Official Shop menggunakan algoritma Support Vector Machine (SVM). Data ulasan dikumpulkan melalui scraping, diberi label secara manual, dan diproses menggunakan metode preprocessing seperti data cleaning, Case Folding, tokenizing, stopword removal, serta SMOTE untuk menyeimbangkan data. Ekstraksi fitur dilakukan dengan TF-IDF, dan SVM digunakan untuk mengklasifikasikan sentimen menjadi positif, negatif, dan netral. Hasil penelitian menunjukkan model SVM dengan kernel linear mencapai akurasi 93%, presisi keseluruhan 95%, recall 91%, dan F1-Score 93%. Pendekatan ini menunjukkan peningkatan performa model dengan akurasi 93% setelah penerapan SMOTE untuk penyeimbangan data. Sentimen mayoritas positif, mengindikasikan tingkat kepuasan tinggi, meskipun ada ulasan negatif terkait efek samping produk. Teknik preprocessing dan penyeimbangan data terbukti efektif dalam meningkatkan performa model. Pendekatan dapat diaplikasikan untuk analisis sentimen produk serupa guna mendukung pemahaman perusahaan terhadap konsumen

==================================================

Abstract :

Sentiment analysis of user reviews on e-commerce platforms helps producers understand customer satisfaction. This study aims to analyze the sentiment of sunscreen product reviews in the Facetology Official Shop using the Support Vector Machine (SVM) algorithm. Review data were collected through scraping, manually labeled, and processed using preprocessing methods such as data cleaning, case folding, tokenizing, stopword removal, and SMOTE to balance the data. Feature extraction was performed using TF-IDF, and SVM was used to classify sentiments into positive, negative, and neutral categories. The results show that the SVM model with a linear kernel achieved an accuracy of 93%, an overall precision of 95%, a recall of 91%, and an F1-Score of 93%. This approach demonstrated improved model performance, with 93% accuracy achieved after applying SMOTE for data balancing. The majority of sentiments were positive, indicating a high level of customer satisfaction, although some negative reviews mentioned side effects of the product. The preprocessing techniques and data balancing proved effective in enhancing the model's performance. This approach can be applied to sentiment analysis of similar products to support companies in better understanding their consumers.

Keywords

analisis sentimen, algoritma Support Vector Machine (SVM), ulasan, SMOTE

Full Text:

PDF

References

[1] F. Pradana Rachman, H. Santoso, and A. History, “Jurnal Teknologi dan Manajemen Informatika Perbandingan Model Deep Learning untuk Klasifikasi Sentiment Analysis dengan Teknik Natural Languange Processing Article Info ABSTRACT,” J. Teknol. dan Manaj. Inform., vol. 7, no. 2, pp. 103–112, 2021, [Online]. Available: http://http//jurnal.unmer.ac.id/index.php/jtmi

[2] I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura J. Electr. Electron. Eng., vol. 5, no. 1, pp. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.

[3] Harnelia and R. Adi Saputra, “Analisis Sentimen Review Skincare Skintific Dengan Algoritma Support Vector Machine (Svm),” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, 2024, doi: 10.23960/jitet.v12i2.4095.

[4] S. Ariqoh, M. A. Sunandar, and Y. Muhyidin, “Analisis Sentimen Pada Produk Cushion Di Website Female Daily Menggunakan Metode Support Vector Machine (Svm),” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 2, no. 3, pp. 137–142, 2023, doi: 10.55123/storage.v2i3.2345.

[5] R. Cantika Larasati, C. Dewi, and C. H. Juli, “Analisis sentimen produk kecantikan jenis moisturizer di twitter menggunakan algoritma super vector machine,” TEKINKOM, vol. 7, no. 1, pp. 124–134, 2024, doi: 10.37600/tekinkom.v7i1.1243.

[6] I. G. B. A. Budaya and I. K. P. Suniantara, “Comparison of Sentiment Analysis Algorithms with SMOTE Oversampling and TF-IDF Implementation on Google Reviews for Public Health Centers,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 3, pp. 1077–1086, 2024, doi: 10.57152/malcom.v4i3.1459.

[7] M. I. Buana and D. B. Arianto, “Analisis Sentimen Ulasan Pengguna Aplikasi ZenPro dengan Implementasi Algoritma Support Vector Machine ( SVM ),” Adopsi Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 45–52, 2024, doi: 10.30872/atasi.v3i1.1092.

[8] N. Yolanda, I. H. Santi, and D. F. H. Permadi, “Analisis Sentimen Analisis Sentimen Popularitas Aplikasi Moodle dan Edmodo Menggunakan Algoritma Support Vector Machine,” J. Algoritm., vol. 3, no. 1, pp. 48–59, 2022, doi: 10.35957/algoritme.v3i1.3313.

[9] M. Hamka, N. Alfatari, and D. Ratna Sari, “Analisis Sentimen Produk Kecantikan Jenis Serum Menggunakan Algoritma Naïve Bayes Classifier,” J. Sist. Komput. dan Inform., vol. 4, no. 1, p. 64, 2022, doi: 10.30865/json.v4i1.4740.

[10] I. W. B. Suryawan, N. W. Utami, and K. Q. Fredlina, “Analisis Sentimen Review Wisatawan pada Objek Wisata Ubud Menggunakan Algoritma Support Vector Machine,” J. Inform. Teknol. dan Sains, vol. 5, no. 1, pp. 133–140, 2023.

[11] A. Karel Maulaya and Junadhi, “Analisis Sentimen Menggunakan Support Vector Machine Masyarakat Indonesia Di Twitter Terkait Bjorka,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 495–500, 2022, doi: 10.37859/coscitech.v3i3.4358.

[12] G. Radiena and A. Nugroho, “Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Kai Access Menggunakan Metode Support Vector Machine,” J. Pendidik. Teknol. Inf., vol. 6, no. 1, pp. 1–10, 2023, doi: 10.37792/jukanti.v6i1.836.

[13] A. D. Pratama and H. Hendry, “Analisa Sentimen Masyarakat Terhadap Penggunaan Chatgpt Menggunakan Metode Support Vector Machine (Svm),” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 1, pp. 327–338, 2024, doi: 10.29100/jipi.v9i1.4285.

[14] D. Angraina Fitri and A. Putri, “Analisis Sentimen Pengguna Aplikasi Google Meet Menggunakan Algoritma Support Vector Machine,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 472–478, 2022, doi: 10.37859/coscitech.v3i3.4260.

[15] T. M. Permata Aulia, N. Arifin, and R. Mayasari, “Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19,” SINTECH (Science Inf. Technol. J., vol. 4, no. 2, pp. 139–145, 2021, doi: 10.31598/sintechjournal.v4i2.762.

[16] D. Oktavia, Y. R. Ramadahan, and Minarto, “Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 407–417, 2023, doi: 10.30865/klik.v4i1.1040.

[17] J. Ipmawati, Saifulloh, and Kusnawi, “Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 247–256, 2024, doi: 10.57152/malcom.v4i1.1066.

[18] S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 153–160, 2023, doi: 10.57152/malcom.v3i2.897.

Refbacks

  • There are currently no refbacks.