Pemodelan Prediktif Emisi CO2 Kendaraan Kanada: Studi Komparatif Neural Network dan Support Vector Machine
Abstract
Abstrak :
Sektor transportasi merupakan penyumbang emisi karbon dioksida (CO2) terbesar yang memperparah perubahan iklim. Penelitian ini bertujuan mengembangkan model prediktif yang akurat untuk memperkirakan emisi CO2 kendaraan dengan memanfaatkan pendekatan pembelajaran mesin. Dataset yang digunakan adalah data emisi kendaraan Kanada dari Kaggle. Metode yang diterapkan adalah Support Vector Machine (SVM) dan Neural Network untuk menganalisis pola kompleks dari berbagai parameter teknis kendaraan, seperti ukuran mesin, jumlah silinder, dan jenis transmisi. Hasil penelitian menunjukkan bahwa Neural Network secara konsisten unggul dibandingkan SVM dengan tingkat akurasi prediksi melebihi 90% dan nilai F1-score mencapai 0,831 untuk model SVM serta 0,954 untuk model Neural Network, yang menunjukkan kinerja klasifikasi yang kuat dan konsisten. Neural Network juga terbukti lebih baik dalam menangkap hubungan non-linier antara karakteristik kendaraan dan emisi CO2. Keberhasilan model ini membuka peluang pengembangan model prediktif yang lebih canggih serta dapat menjadi dasar bagi pembuat kebijakan dalam merancang regulasi emisi yang lebih akurat dan berbasis data.
=====================================================
Abstract :
The transportation sector is the largest contributor to carbon dioxide (CO2) emissions that exacerbate climate change. This research aims to develop an accurate predictive model to estimate vehicle CO2 emissions by utilizing a machine learning approach. The dataset used is Canadian vehicle emissions data from Kaggle. The methods applied are Support Vector Machine (SVM) and Neural Network to analyze complex patterns of various vehicle technical parameters, such as engine size, number of cylinders, and transmission type. The results showed that the Neural Network consistently excelled over SVM with a prediction accuracy rate exceeding 90% and an F1-score value of 0.831 for the SVM model and 0.954 for the Neural Network model, indicating a strong and consistent classification performance. Neural networks have also been shown to be better at capturing the non-linear relationship between vehicle characteristics and CO2 emissions. The success of this model opens up opportunities for the development of more sophisticated predictive models and can serve as a basis for policymakers to design more accurate and data-driven emissions regulations.
Keywords
Full Text:
PDFReferences
[1] Sudarti, Yushardi, and N. Kasanah, “Analisis Potensi Emisi CO2 Oleh Berbagai Jenis Kendaraan Bermotor di Jalan Raya Kemantren Kabupaten Sidoarjo,” vol. 9, 2022, doi: http://dx.doi.org/10.21776/ub.jsal.2022.009.02.4.
[2] F. Permatasari, S. Hadisusanto, and E. Haryono, “Emisi CO2 Kendaraan Bermotor Periode Kebijakan Pembatasan Sosial Berskala Besar (Studi Kasus: Ruas Jalan di Jakarta Pusat),” vol. 15, 2021, doi: 10.20886/jklh.2021.15.1.31-44.
[3] N. Ambarsari, K. Sari, and C. Maulidi, “Emisi CO2 Kendaraan Bermotor Kawasan Alun-Alun Kota Batu,” vol. 8, 2019, Accessed: Nov. 08, 2025. [Online]. Available: https://purejournal.ub.ac.id/index.php/pure/article/view/385
[4] P. Sarasidehe, D. Jati, and Jumiati, “Analisis Kemampuan Vegetasi pada Ruang Terbuka Hijau dalam Menyerap Emisi CO2 Kendaraan Bermotor di Area Kantor Gubernur Kalimantan Barat,” vol. 6, 2022, doi: https://doi.org/10.26760/jrh.v6i3.219-228.
[5] C. Handayani, A. Sukmono, and H. Firdaus, “Analisis Ketersediaan Ruang Terbuka Hijau Terhadap Emisi CO2 Oleh Gas Buang Kendaraan Bermotor Di Kelurahan Tembalang Dan Sumurboto,” vol. 9, 2020, doi: https://doi.org/10.14710/pilars.%25v.%25i.%25Y.%25p.
[6] Z. Raffinet, “Analisis Emisi Karbondioksida Ditinjau Dari Penggunaan Kendaraan Berbasis Aplikasi Di Kecamatan Sukolilo Surabaya.” Accessed: Nov. 08, 2025. [Online]. Available: https://repository.upnjatim.ac.id/5841/
[7] A. Rismana, R. Budiarto, and A. Harto, “Analisis Energi dan Emisi CO2 Rencana Bus Listrik di YOGYAKARTA Studi Kasus Trans Jogja,” vol. 11, 2019, doi: 10.5614/joki.2019.11.1.1.
[8] F. Mutia, A. Soegianto, and Nurina Fitriani, “Studi Penyerapan Emisi Karbondioksida (Co2) Kendaraan Bermotor Di Jalur Hijau Jalan Dr. Soetomo Kota Surabaya.” Accessed: Nov. 08, 2025. [Online]. Available: https://repository.unair.ac.id/102847/
[9] K. Asgaryansyah and P. Paniran, “Implementasi Algoritma Regresi Linier untuk Mengukur Tingkat Pengeluaran Co2 Pada Kendaraan Bermotor,” vol. 2, 2024, Accessed: Dec. 24, 2025. [Online]. Available: https://journal.arteii.or.id/index.php/Mars/article/view/132
[10] R. D. Purnomoasri, T. Yuono, S. Sumina, and F. D. L. Utama, “Analisis Emisi CO dan CO2 pada Simpang Bersinyal Bejen Kabupaten Karanganyar,” vol. 25, 2023, doi: https://doi.org/10.20961/enviro.v25i1.78524.
[11] R. Adhianti, K. Sari, and C. Meidiana, “Peningkatan Biokapasitas RTH Publik Dalam Upaya Pengurangan Emisi CO2 Ruas Jalan Ranugrati Kota Malang,” vol. 9, 2020, Accessed: Nov. 08, 2025. [Online]. Available: https://purejournal.ub.ac.id/index.php/pure/article/view/116
[12] Elfa and Ayu Handrini, “Studi Emisi Gas Buang CO2 Terhadap Bahan Bakar Pada Sepeda Motor Empat Langkah dan Dua Langkah.” Accessed: Nov. 08, 2025. [Online]. Available: http://scholar.unand.ac.id/52015/
[13] M. Liang, Y. Chao, Y. Tu, and T. Xu, “Vehicle Pollutant Dispersion in the Urban Atmospheric Environment: A Review of Mechanism, Modeling, and Application,” 2023, Accessed: Nov. 08, 2025. [Online]. Available: file:///C:/Users/Dinda%20Aprillia/AppData/Local/Temp/cbe3322c-dc15-4fee-839b-d52e2f8eff31_referensi%20jurnal.zip.f31/referensi%20jurnal/atmosphere-14-00279-v3.pdf
[14] A. A. Ajala, O. L. Adeoye, O. M. Salami, and A. Y. Jimoh, “An examination of daily CO2 emissions prediction through a comparative analysis of machine learning, deep learning, and statistical models,” 2025, Accessed: Nov. 08, 2025. [Online]. Available: file:///C:/Users/Dinda%20Aprillia/AppData/Local/Temp/e24591af-a175-435f-86d8-545c8ea87982_referensi%20jurnal.zip.982/referensi%20jurnal/s11356-024-35764-8.pdf
[15] M. R. Rodriguez, R. Besteiro, J. A. Ortega, M. D. Fernandez, and T. Arango, “ Evolution and Neural Network Prediction of CO2 Emissions in Weaned Piglet Farms,” 2022, Accessed: Nov. 08, 2025. [Online]. Available: file:///C:/Users/Dinda%20Aprillia/AppData/Local/Temp/081f2df5-f752-4f03-a09f-24121b3aaf44_referensi%20jurnal.zip.f44/referensi%20jurnal/sensors-22-02910.pdf
[16] P. Pryci´nski, P. Pielecha, J. Korzeb, J. Pielecha, M. Kostrzewski, and A. Eliwa, “Air Pollutant Emissions of Passenger Cars in Poland in Terms of Their Environmental Impact and Type of Energy Consumption,” 2024, Accessed: Nov. 08, 2025. [Online]. Available: file:///C:/Users/Dinda%20Aprillia/AppData/Local/Temp/02a34d55-9d9b-45b5-a3fc-b2f3356e768c_referensi%20jurnal.zip.68c/referensi%20jurnal/energies-17-05357.pdf
[17] K. BUSSABAN1, K. KULARBPHETTONG2, and C. BOONSENG3, “Prediction Of CO2 Emissions Using Machine Learning,” 2023, Accessed: Nov. 08, 2025. [Online]. Available: file:///C:/Users/Dinda%20Aprillia/AppData/Local/Temp/969f35b5-7e18-4811-9b8b-4cb75da2a3c7_referensi%20jurnal.zip.3c7/referensi%20jurnal/VASSI-abstracts_129.pdf
[18] J. Han, M. Kamber, and J. Pei, “Data Mining: Concepts and Techniques,” 2011, Accessed: Dec. 25, 2025. [Online]. Available: https://ia600603.us.archive.org/2/items/datamining_201811/DS-book%20u5.pdf
[19] S. Abe, “Minimal Complexity Support Vector Machines for Pattern Classification,” 2020, Accessed: Dec. 25, 2025. [Online]. Available: https://www.mdpi.com/2073-431X/9/4/88
[20] Y. G. Tejeda and H. A. Mayer, “Deep Learning with Convolutional Neural Networks: A Compact Holistic Tutorial with Focus on Supervised Regression,” 2024, Accessed: Dec. 25, 2025. [Online]. Available: https://www.mdpi.com/2504-4990/6/4/132
[21] D. Podder, “CO2 Emission by Vehicles.” Accessed: Nov. 08, 2025. [Online]. Available: https://www.kaggle.com/datasets/debajyotipodder/co2-emission-by-vehicles
Refbacks
- There are currently no refbacks.





