Penerapan Algoritma K-Means Clustering untuk Klasterisasi Pola Kehadiran Pegawai
Abstract
Abstrak :
Analisis pola kehadiran pegawai merupakan langkah penting dalam memahami karakteristik perilaku waktu kehadiran di lingkungan kerja. Penelitian ini bertujuan untuk menganalisis pola kehadiran pegawai berdasarkan data absensi pegawai menggunakan algoritma K-Means clustering. Tahapan penelitian meliputi pengumpulan data, pra-pemrosesan data, klasterisasi, evaluasi dan visualisasi. Data absensi selama tiga bulan diolah melalui tahap pembersihan, diskretisasi, pembentukan, pembuatan atribut baru dan normalisasi untuk memastikan kualitas data. Proses klasterisasi dilakukan dengan jumlah 3 klaster bedasarkan hasil metode elbow. Evaluasi model menggunakan metode Davies–Bouldin Index (DBI) menghasilkan nilai sebesar 0,743. Hasil klasterisasi kemudian divisualisasikan menggunakan Power BI untuk mempermudah interpretasi pola kehadiran. Berdasarkan hasil tersebut, diperoleh 3 pola waktu kehadiran utama yaitu waktu kehadiran baik, cukup, dan kurang yang menggambarkan perbedaan karakteristik waktu kehadiran pegawai secara lebih jelas. Hasil penelitian ini memberikan pemahaman menyeluruh mengenai pola waktu kehadiran pegawai yang dapat dijadikan dasar untuk analisis lebih lanjut, seperti evaluasi kinerja dan kedisplinan.
====================================================
Abstract :
Analysis of employee attendance patterns is an important step in understanding the characteristics of attendance behavior in the work environment. This study aims to analyze employee attendance patterns based on attendance data using the K-Means clustering algorithm. The research stages include data collection, data pre-processing, clustering, evaluation and visualization. Attendance data for 3 months is processed through the stages of cleaning, discretion, creation of new attributes and normalization to ensure data quality. The clustering process was carried out with a total of 3 clusters based on the results of the elbow method. The model evaluation using the Davies–Bouldin Index (DBI) method yielded a value of 0.743. The clustering results are then visualized using Power BI to make it easier to interpret attendance patterns. Based on these results, 3 main attendance time patterns were obtained, namely good, sufficient, and poor attendance time which depicts the differences in the characteristics of employee attendance time more clearly. The results of this study provide a comprehensive understanding of the pattern of employee attendance time which can be used as a basis for further analysis, such as performance and discipline evaluation.
Keywords
Full Text:
PDFReferences
[1] K. L. P. Situmorang and J. Manurung, “Sistem Pendukung Keputusan Penilaian Kinerja Pegawai RSUD Dr. Hadrianus Sinaga Dengan Menggunakan Metode Multi Factor Evaluation Process,” Jurnal Teknik Informatika UNIKA Santo Thomas, vol. 06, pp. 354–366, 2021, doi: 10.54367/jtiust.v6i2.1557.
[2] R. Fitria, I. Sahputra, and R. Maulana, “Optimization of Employee Attendance System Using Face Recognition and Geotagging Based on Mobile Android,” Journal of Artificial Intelligence and Software Engineering, vol. 5, no. 2, pp. 510–527, 2025, doi: 10.30811/jaise.v5i2.6892.
[3] L. Stie and D. Dahanai Buntok, “PENGARUH DISIPLIN KERJA TERHADAP KINERJA PEGAWAI DALAM PENENTUAN TITIK BATAS DESA WILAYAH KABUPATEN BARITO SELATAN The Effect of Work Discipline on Employee Performance in Determining the Village Boundary Points in the South Barito Regency”, doi: 10.33084/restorica.v5i2.
[4] P. S. Nabillah and M. A. Rizqi, “EFEKTIVITAS SISTEM DISIPLIN KERJA PADA PT RAVANA JAYA,” 2024, [Online]. Available: https://e-jurnal.nobel.ac.id/index.php/akmen
[5] L. Firlian, R. Fadila, M. K. Ridho, E. Sunandi, and U. Aflah, “Pendekatan Data Mining dalam Optimalisasi Margin Penjualan Adidas: Studi Klasterisasi dengan K-Means dan Fuzzy C-Means,” Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi, vol. 13, no. 2, pp. 229–237, Jul. 2025, doi: 10.37905/euler.v13i2.32417.
[6] U. Arfan and N. Paraga, “Perbandingan Algoritma K-Means, Naïve Bayes dan Decision Tree Dalam Memprediksi Penjualan Bahan Bakar Minyak,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 4, pp. 1379–1389, Jul. 2024, doi: 10.57152/malcom.v4i4.1566.
[7] W. Alfian, Kusrini, and T. Hidayat, “Analisis Clustering Pegawai Berdasarkan Tingkat Kedisiplinan Menggunakan Algoritma K-Means dan Davies-Bouldin Index,” Journal of Electrical Engineering and Computer (JEECOM), vol. 6, no. 2, pp. 437–448, 2024, doi: 10.33650/jeecom.v6i2.9556.
[8] Y. Muharmi and S. Nadriati, “Analysis Of Employee Discipline Based On Digital Attendance With The K-Means Algorithm Method,” Jurnal Teknologi Dan Open Source, vol. 5, no. 2, pp. 115–135, 2022, doi: 10.36378/jtos.v5i2.2628.
[9] S. Darma, Y. Yusman, and J. Hendrawan, “Analisis Data Tingkat Kehadiran Pegawai dengan Menggunakan Clustering K-Means Pada Dinas Pekerjaan Umum dan Penataan Ruang Kabupaten Langkat,” Jurnal Minfo Polgan, vol. 13, no. 1, pp. 1105–1116, 2024, doi: 10.33395/jmp.v13i1.13958.
[10] I. Virgo, S. Defit, and Y. Yuhandri, “Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering,” Jurnal Sistim Informasi dan Teknologi, vol. 2, pp. 23–28, 2020, doi: 10.37034/jsisfotek.v2i1.17.
[11] Adih, W. A. D. Pangestu, M. F. Akbar, Purnamasari, and Saprudin, “Analisis K-Means Clustering pada Sistem Presensi Mobile dengan Fitur GPS Radius dan Foto Selfie untuk Pegawai Non-PNS di Puskesmas Kosambi,” Modem : Jurnal Informatika dan Sains Teknologi., vol. 3, no. 1, pp. 15–30, Dec. 2024, doi: 10.62951/modem.v3i1.324.
[12] N. Eliza, I. Husein, and S. Dur, “Determining Zoning of Areas Affected by Flood Disasters in Medan City Using Silhouette Coefficient and Davies Bouldin Index Analysis,” Jurnal Pijar Mipa, vol. 19, no. 3, pp. 558–563, May 2024, doi: 10.29303/jpm.v19i3.6707.
[13] A. Yufita, R. Kurniawan, Y. W. Arie, and T. Suprapti, “Optimalisasi Klasterisasi Tenaga Kesehatan Menggunakan K-Means dan Davies Bouldin Index,” IJAI (Indonesian Jurnal of Applied Informatics), vol. 9, pp. 452–461, Feb. 2025, doi: https://dx.doi.org/10.20961/ijai.v9i2.96645.
[14] A. Fitriani, E. Arfi, and A. Huda, “Penerapan Algoritma K-Means Clustering dalam Memetakan Produktivitas Lokasi Perkebunan Nanas PT Great Giant Pineapple,” Journal of Mathematics, Computations and Statistics, vol. 7, no. 2, pp. 215–231, Sep. 2024, doi: 10.35580/jmathcos.v7i2.4200.
[15] F. K. Wardani and R. Kurniawan, “PENGELOMPOKAN RESPONSIVITAS HASIL KUESIONER TERHADAP PENGGUNAAN PERPUSTAKAAN DIGITAL MENGGUNAKAN ALGORITMA K-MEANS,” 2024, doi: 10.33795/jip.v10i2.4850.
[16] D. Marcelina, A. Kurnia, and T. Terttiaavini, “Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, pp. 293–301, Nov. 2023, doi: 10.57152/malcom.v3i2.952.
Refbacks
- There are currently no refbacks.





