Treatment of Waste Water from Li-ion Batteries Cathode Material Production: Selection of adsorbents

Muhammad Nur Ikhsanudin, Shofirul Sholikhatun Nisa, Dian Ahmad Bunayah Pratama Sudian

Abstract


Batteries become determining factor in the sustainability of NREs as their boundaries are pushed beyond its limits. The development of batteries can be trace back to its discovery by Volta. A hundred years later, the energy and power density of batteries has increased significantly. The production of cathode materials is performed using the hydrometallurgical method followed by high-temperature metal processing and involving large amounts of waste water. The processing of cathode material precursors also involves a hydrometallurgical process and also produce significant amount of wastewater. In addition, the recycling of end-of-life LIBs are also using a hydrometallurgical method which generates waste water. To improve the eco-friendliness of LIBs technology, wastewater treatments of LIBs production from upstream and downstream industries should be considered. The wastewater from LIBs production is unavoidable; thus, proper wastewater treatment is necessary to assure the sustainability of the technology. The adsorption of inorganic pollutants is considered a win-win solution. The selection of adsorbents such as silica (SiO2), titania (TiO2), alumina (Al2O3), activated carbon, and zeolites offer different characteristics. The processing of these types of material is discussed and most of them require precursors that can be obtained from another source of waste. This means the waste treatment is not only reducing one type of pollutant but also another type of pollutant during the synthesis of adsorbents.

Keywords: Li-ion battery, cathode, waste water, adsorbents.


Full Text:

PDF
rticle

References


[1] M. Li, J. Lu, Z. Chen, and K. Amine, “30 Years of Lithium-Ion Batteries,” Advanced Materials, vol. 30, no. 33, pp. 1–24, 2018, doi: 10.1002/adma.201800561.

[2] C. Zhao et al., “Investigation of solution chemistry to enable efficient lithium recovery from low-concentration lithium-containing wastewater,” Front Chem Sci Eng, vol. 14, no. 4, pp. 639–650, Aug. 2020, doi: 10.1007/s11705-019-1806-3.

[3] A. H. Jawad, R. A. Rashid, M. A. M. Ishak, and L. D. Wilson, “Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies,” Desalination Water Treat, vol. 57, no. 52, pp. 25194–25206, Nov. 2016, doi: 10.1080/19443994.2016.1144534.

[4] D. Zhang, J. Yin, J. Zhao, H. Zhu, and C. Wang, “Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon,” J Environ Chem Eng, vol. 3, no. 3, pp. 1504–1512, Jul. 2015, doi: 10.1016/j.jece.2015.05.014.

[5] R. Acosta, V. Fierro, A. Martinez de Yuso, D. Nabarlatz, and A. Celzard, “Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char,” Chemosphere, vol. 149, pp. 168–176, Apr. 2016, doi: 10.1016/j.chemosphere.2016.01.093.

[6] Y. Sun et al., “Preparation of activated carbon derived from cotton linter fibers by

fused NaOH activation and its application for oxytetracycline (OTC) adsorption,” J Colloid Interface Sci, vol. 368, no. 1, pp. 521–527, Feb. 2012, doi: 10.1016/j.jcis.2011.10.067.

[7] M. M. Rahman, M. Awang, B. S. Mohosina, B. Y. Kamaruzzaman, W. B. W. Nik, and C. M. C. Adnan, “Waste Palm Shell Converted to High Efficient Activated Carbon by Chemical Activation Method and Its Adsorption Capacity Tested by Water Filtration,” APCBEE Procedia, vol. 1, pp. 293–298, 2012, doi: 10.1016/j.apcbee.2012.03.048.

[8] T. Priya, B. K. Mishra, and M. N. V. Prasad, “Physico-chemical techniques for the removal of disinfection by-products precursors from water,” in Disinfection By-products in Drinking Water, Elsevier, 2020, pp. 23–58. doi: 10.1016/b978-0-08-102977-0.00002-0.

[9] S. Falcone Miller and B. G. Miller, “Advanced flue gas cleaning systems for sulfur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants,” in Advanced Power Plant Materials, Design and Technology, Elsevier Inc., 2010, pp. 187–216. doi: 10.1533/9781845699468.2.187.

[10] S. Lestari, D. Arfiati, A. Masrevaniah, and M. Sholichin, “Treatment of Water River with Activated Carbon from Coal and Palm Shells as Adsorbent,” J-PAL, vol. 11, no. 1,

pp. 2087–3522, 2020, doi: 10.21776/ub.jpal.2020.010.01.02.

[11] C. A. Riyanto, M. S. Ampri, and Y. Martono, “Synthesis and Characterization of Nano Activated Carbon from Annatto Peels (Bixa orellana L.) Viewed from Temperature Activation and Impregnation Ratio of H3PO4,” EKSAKTA: Journal of Sciences and Data Analysis, pp. 44–50, Feb. 2020, doi: 10.20885/eksakta.vol1.iss1.art7.

[12] M. A. Islam, A. Benhouria, M. Asif, and B. H. Hameed, “Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes,” J Taiwan Inst Chem Eng, vol. 52, pp. 57–64, Jul. 2015, doi: 10.1016/j.jtice.2015.02.010.

[13] M. J. Ahmed and S. K. Theydan, “Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption,” J Anal Appl Pyrolysis, vol. 105, pp. 199–208, 2014, doi: 10.1016/j.jaap.2013.11.005.

[14] A. Budianto, E. Kusdarini, N. H. Amrullah, E. Ningsih, K. Udyani, and A. Aidawiyah, “Physics and chemical activation to produce activated carbon from empty palm oil bunches waste,” in IOP Conference Series: Materials Science and Engineering, Jan. 2021, vol. 1010, no. 1. doi: 10.1088/1757-899X/1010/1/012016.

[15] A. Zulkania, G. F. Hanum, and A. Sri Rezki, “The potential of activated carbon derived from bio-char waste of bio-oil pyrolysis as adsorbent,” in MATEC Web of Conferences, Feb. 2018, vol. 154. doi: 10.1051/matecconf/201815401029.

[16] K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani, and S. Pattabhi, “Utilization of various agricultural wastes for activated carbon preparation and

application for the removal of dyes and metal ions from aqueous solutions.”

[17] S. Maulina and M. Iriansyah, “Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder,” in IOP Conference Series: Materials Science and Engineering, Mar. 2018, vol. 309, no. 1. doi: 10.1088/1757-899X/309/1/012072.

[18] E. Sahara, W. D. Sulihingtyas, D. I. Putu, and A. Surya Mahardika, “PEMBUATAN DAN KARAKTERISASI ARANG AKTIF DARI BATANG TANAMAN GUMITIR (Tagetes erecta) YANG DIAKTIVASI DENGAN H3PO4”.

[19] K. Zaqyyah, S. Subekti, and M. Lamid, “Characterization of Activated Carbon from Industrial Solid Waste Agar with a Different Activator Concentrations,” 2020. [Online]. Available: http://ojs.omniakuatika.net

[20] S. Moosavi, C. W. Lai, S. Gan, G. Zamiri, O. Akbarzadeh Pivehzhani, and M. R. Johan, “Application of efficient magnetic particles and activated carbon for dye removal from wastewater,” ACS Omega, vol. 5, no. 33. American Chemical Society, pp. 20684–20697, Aug. 25, 2020. doi: 10.1021/acsomega.0c01905.

[21] Z. Wang, C. Yang, Z. Yang, C. E. Brown, B. P. Hollebone, and S. A. Stout, “Petroleum Biomarker Fingerprinting for Oil Spill Characterization and Source Identification,” in Standard Handbook Oil Spill Environmental Forensics: Fingerprinting and Source Identification: Second Edition, Elsevier Inc., 2016, pp. 131–254. doi: 10.1016/B978-0-12-809659-8.00004-8.

[22] S. Li, K. Han, J. Li, M. Li, and C. Lu, “Preparation and characterization of super activated carbon produced from gulfweed by KOH activation,” Microporous and Mesoporous Materials, vol. 243, pp. 291–

300, 2017, doi: 10.1016/j.micromeso.2017.02.052.

[23] G. Feiqiang, L. Xiaolei, J. Xiaochen, Z. Xingmin, G. Chenglong, and R. Zhonghao, “Characteristics and toxic dye adsorption of magnetic activated carbon prepared from biomass waste by modified one-step synthesis,” Colloids Surf A Physicochem Eng Asp, vol. 555, pp. 43–54, Oct. 2018, doi: 10.1016/j.colsurfa.2018.06.061.

[24] A. Satriawan, Muhdarina, and A. Awaluddin, “The utilization silica from oil fly ash as a raw material for paper filler,” in Journal of Physics: Conference Series, Oct. 2021, vol. 2049, no. 1. doi: 10.1088/1742-6596/2049/1/012062.

[25] Y.-F. Zhang, M. U. Ghani, F. Sultan, M. Inc, and M. Cancan, “Connecting SiO4 in Silicate and Silicate Chain Networks to Compute Kulli Temperature Indices,” Molecules, vol. 27, no. 21, p. 7533, Nov. 2022, doi: 10.3390/molecules27217533.

[26] S. Moosavi, C. W. Lai, S. Gan, G. Zamiri, O. Akbarzadeh Pivehzhani, and M. R. Johan, “Application of efficient magnetic particles and activated carbon for dye removal from wastewater,” ACS Omega, vol. 5, no. 33. American Chemical Society, pp. 20684–20697, Aug. 25, 2020. doi: 10.1021/acsomega.0c01905.

[27] R. Wirawan, H. Hadi Sutrisno, D. Ambarwati, and A. Febriani, “Characteristic of Silica Level (SiO3) Resulted from the Extraction of Rice Husk Ash with KOH Solvent towards the Amount of Heating Time,” 2018. [Online]. Available: www.sciencepubco.com/index.php/IJET

[28] A. I. (Arthur I. Vogel, G. H. Jeffery, and A. Israel. Vogel, Vogel’s textbook of quantitative chemical analysis. Longman Scientific & Technical, 1989.

[29] O. Safitri, H. Alrasyid, and K. Udyani, “PEMBUATAN SILIKA TERMODIFIKASI DARI SEKAM PADI SEBAGAI ADSORBEN LOGAM

BERAT PADA LIMBAH CAIR [REVIEW],” 2020.

[30] dan Aman Sentosa Panggabean Jurusan Kimia, F. Matematika dan Ilmu Pengetahuan Alam, U. Mulawarman Jalan Barong Tongkok No, and K. Gunung Kelua, “PEMBUATAN SILIKA GEL DARI ABU DAUN BAMBU PETUNG (Dendrocalamus asper (Schult. f) Backer ex Heyne) DAN APLIKASINYA UNTUK ADSORPSI ION Cd (II) THE MANUFACTURING OF SILICA GEL FROM BAMBOO LEAF ASH (Dendrocalamus asper (Schult. f) Backer ex Heyne) AND THE APPLICATION FOR ADSORPTION Cd (II) ION.”

[31] M. Wu et al., “Preparation and Characterization of Epoxy/Alumina Nanocomposites,” J Nanosci Nanotechnol, vol. 20, no. 5, pp. 2964–2970, Oct. 2019, doi: 10.1166/jnn.2020.17460.

[32] M. Stefanidou, E. C. Tsardaka, and E. Pavlidou, “Influence of nano-silica and nano-alumina in lime-pozzolan and lime-metakaolin binders,” in Materials Today: Proceedings, 2017, vol. 4, no. 7, pp. 6908–6922. doi: 10.1016/j.matpr.2017.07.020.

[33] S. Said, S. Mikhail, and M. Riad, “Recent processes for the production of alumina nano-particles,” Mater Sci Energy Technol, vol. 3, pp. 344–363, 2020, doi: 10.1016/j.mset.2020.02.001.

[34] Z. Li et al., “Aluminum Oxide Nanoparticle Films Deposited from a Nonthermal Plasma: Synthesis, Characterization, and Crystallization,” ACS Omega, vol. 5, no. 38, pp. 24754–24761, Sep. 2020, doi: 10.1021/acsomega.0c03353.

[35] B. C. Krause et al., “Aluminum and aluminum oxide nanomaterials uptake after oral exposure - a comparative study,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-59710-z.

[36] R. Prins, “On the structure of γ-Al2O3,” Journal of Catalysis, vol. 392. Academic

Press Inc., pp. 336–346, Dec. 01, 2020. doi: 10.1016/j.jcat.2020.10.010.

[37] S. N. S. Mohamad, N. Mahmed, D. S. Che Halin, K. Abdul Razak, M. N. Norizan, and I. S. Mohamad, “Synthesis of alumina nanoparticles by sol-gel method and their applications in the removal of copper ions (Cu2+) from the solution,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 701, no. 1. doi: 10.1088/1757-899X/701/1/012034.

[38] J. Huang, Y. Liu, J. Yuan, and H. Li, “Al/Al2O3 composite coating deposited by flame spraying for marine applications: Alumina skeleton enhances anti-corrosion and wear performances,” Journal of Thermal Spray Technology, vol. 23, no. 4. Springer New York LLC, pp. 676–683, 2014. doi: 10.1007/s11666-014-0056-7.

[39] S. Tanaka, S. Yamada, R. Soga, K. Komurasaki, R. Kawashima, and H. Koizumi, “Alumina reduction by laser ablation using a continuous-wave CO2 laser toward lunar resource utilization,” Vacuum, vol. 167, pp. 495–499, Sep. 2019, doi: 10.1016/j.vacuum.2018.07.054.

[40] K. Frikha, L. Limousy, J. Bouaziz, S. Bennici, K. Chaari, and M. Jeguirim, “Elaboration of alumina-based materials by solution combustion synthesis: A review,” Comptes Rendus Chimie, vol. 22, no. 2–3. Elsevier Masson SAS, pp. 206–219, Feb. 01, 2019. doi: 10.1016/j.crci.2018.10.004.

[41] Saryati, Sutisna, Sumarjo, W. ZL, Wahyudianingsih, and S. Suprapti, “KOMPOSIT TAWAS ARANG AKTIF ZEOLIT UNTUK MEMPERBAIKI KUALITAS AIR Saryati,” Sains Materi Indonesia, vol. 4, pp. 9–15, 2002.

[42] E. B. G. Johnson and S. E. Arshad, “Hydrothermally synthesized zeolites based on kaolinite: A review,” Applied Clay Science, vol. 97–98. Elsevier Ltd, pp. 215–

221, 2014. doi: 10.1016/j.clay.2014.06.005.

[43] A. Tavolaro and E. Drioli, “Zeolite Membranes.”

[44] H. M. Aly, M. E. Moustafa, and E. A. Abdelrahman, “Synthesis of mordenite zeolite in absence of organic template,” Advanced Powder Technology, vol. 23, no. 6, pp. 757–760, Nov. 2012, doi: 10.1016/j.apt.2011.10.003.

[45] A. G. Ashton, S. Batmanian, J. Dwyer, I. S. Elliott, and F. R. Fitch, “THE CATALYTIC PROPERTIES OF MODIFIED PENTASIL ZEOLITES,” 1966.

[46] S. K. Pavelić, J. S. Medica, D. Gumbarević, A. Filošević, N. Pržulj, and K. Pavelić, “Critical review on zeolite clinoptilolite safety and medical applications in vivo,” Frontiers in Pharmacology, vol. 9, no. NOV. Frontiers Media S.A., Nov. 27, 2018. doi: 10.3389/fphar.2018.01350.

[47] P. A. Barrett, Q. S. Huo, and N. A. Stephenson, “Recent advances in low silica zeolite synthesis,” in Studies in Surface Science and Catalysis, vol. 170, no. A, Elsevier Inc., 2007, pp. 250–257. doi: 10.1016/S0167-2991(07)80846-9.

[48] A. Kotoulas et al., “Zeolite as a potential medium for ammonium recovery and second cheese whey treatment,” Water (Switzerland), vol. 11, no. 1, Jan. 2019, doi: 10.3390/w11010136.

[49] J. Wu et al., “High Si/Al ratio HZSM-5 zeolite: An efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene,” Green Chemistry, vol. 17, no. 4, pp. 2353–2357, Apr. 2015, doi: 10.1039/c4gc02510e.

[50] M. Djaeni, L. Kurniasari, and S. B. Sasongko, “Preparation of Natural Zeolite for Air Dehumidification in Food Drying,” International Journal of Science and

[51] K. D. Pandiangan, W. Simanjuntak, E. Pratiwi, and M. Rilyanti, “Characteristics and catalytic activity of zeolite-a synthesized from rice husk silica and aluminium metal by sol-gel method,” in Journal of Physics: Conference Series, Oct. 2019, vol. 1338, no. 1. doi: 10.1088/1742-6596/1338/1/012015.

[52] C. S. Cundy and P. A. Cox, “The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time,” Chem Rev, vol. 103, no. 3, pp. 663–701, Mar. 2003, doi: 10.1021/cr020060i.

[53] X. Zeng et al., “Microwave synthesis of zeolites and their related applications,” Microporous and Mesoporous Materials, vol. 323. Elsevier B.V., Aug. 01, 2021. doi: 10.1016/j.micromeso.2021.111262.

[54] K. St~hl and R. Thomasson, “The dehydration and rehydration processes in the natural zeolite mesolite studied by conventional and synchrotron X-ray powder diffraction,” 1994.

[55] M. Chen et al., “Renewable P-type zeolite for superior absorption of heavy metals: Isotherms, kinetics, and mechanism,” Science of the Total Environment, vol. 726, Jul. 2020, doi: 10.1016/j.scitotenv.2020.138535.

[56] A. Campanile, B. Liguori, C. Ferone, D. Caputo, and P. Aprea, “Zeolite-based monoliths for water softening by ion exchange/precipitation process,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-07679-2.

[57] B. Heru Susanto, M. Nasikin, A. Faisal, and M. Irfan, “Preparation and Characterization NiMo/Zeolite Catalyst using Microwave Polyol Process Method for Synthesizing Renewable Diesel from Jathropa Oil.”

[58] O. Hugon, M. Sauvan, P. Benech, C. Pijolat, and F. Lefebvre, “Gas separation with a zeolite filter, application to the selectivity enhancement of chemical sensors,” 2000. [Online]. Available: www.elsevier.nlrlocatersensorb




DOI: https://doi.org/10.20961/esta.v2i2.67864

Refbacks

  • There are currently no refbacks.