Accreditation:
Indexed by:
ISSN:
Tools
Abstract. Bagasse is a waste that can still be utilized, one of which is processed into biochar. In this study, bagasse waste came from a sugar factory in Majalengka, Cirebon, West Java. The bagasse pyrolysis process was carried out at PT XXX biochar factory located in the area. Industrial scale biochar production is done by Rotary Carbonization Furnace. The research objective was to characterize biochar with variable residence time and pyrolysis temperature. Biochar was characterized based on physicochemical properties and surface composition analysis for use as a soil improver and adsorbent. The test results show that residence time and pyrolysis temperature affect biochar products. Physical characterization showed that the pyrolysis residence time of 24.73 minutes with a temperature of 400 oC gave biochar results with pH (8.92), c-organic (24.15%), total N (0.2%), P2O5 (0.17%) and high C/N ratio (1,208.00). This biochar has good quality for application as a soil improver, especially in increasing carbon storage capacity and improving soil pH. The high C/N ratio and low nitrogen content require alloying with other sources to increase nitrogen and phosphorus and lower the C/N ratio. Chemical characterization by BET test showed that pyrolysis residence time of 24.73 min at 400 oC gave the best results in terms of increasing surface area (0.554 m²/g) and pore volume (0.00364 cc/g), making it the optimal temperature to produce biochar with high adsorption capacity. Surface characterization by SEM-EDX mapping analysis showed that the pyrolysis residence time of 24.73 min at 400 oC gave results with relatively high composition of carbon (82.17%), oxygen (14.89%), silica (1.97%), potassium (0.42%), and made it more effective for soil conditioner applications.
Keywords:
Bagasse, Biochar, Pyrolysis.
[1] Suparnawati, Harlia, Warsidah, and A. B. Aritonang, “Prodkasi dan karakterisasi biochar ampas tebu,” Indones. J. Pure Appl. Chem., vol. 1, no. 1, pp. 30–38, 2018, [Online]. Available: http://jurnal.untan.ac.id/index.php/IJoPAC
[2] F. S. D. Mentari, Yuanita, and Roby, “Pembuatan Kompos Ampas Tebu dengan Bioaktivator MOL Rebung Bambu,” Bul. Poltanesa, vol. 22, no. 1, pp. 1–6, 2021, doi: 10.51967/tanesa.v22i1.333.
[3] Y. Bustami, “Pengaruh Ampas Tebu Terhadap Pertumbuhan dan Produktivitas Tanaman Terong Hijau,” Techno J. Penelit., vol. 7, no. 01, p. 91, 2018, doi: 10.33387/tk.v7i01.608.
[4] C. Purnawan, T. Martini, and I. P. Rini, “Sintesis dan Karakterisasi Silika Abu Ampas Tebu Termodifikasi Arginin sebagai Adsorben Ion Logam Cu ( II ) terhadap ion logam Cu ( II ) disebabkan oleh rendahnya kemampuan oksigen ( silanol dan,” ALCHEMU J. Penilitian Kim., vol. 14, no. 2, pp. 333–348, 2018, doi: 10.20961/alchemy.14.2.19512.333-348.
[5] B. S. Pratama, P. Aldriana, B. Ismuyanto, and A. S. D. S. N. Hidayati, “Konversi Ampas Tebu Menjadi Biochar dan Karbon Aktif untuk Penyisihan Cr(VI),” J. Rekayasa Bahan Alam dan Energi Berkelanjutan, vol. 2, no. 1, pp. 7–12, 2018.
[6] A. G. H. Saif, S. S. Wahid, and M. R. O. Ali, “Pyrolysis of Sugarcane Bagasse : The Effects of Process Parameters on the Product Yields,” Trans Tech Publ. Ltd, Switz. Submitt., vol. 1008, pp. 159–167, 2020, doi: 10.4028/www.scientific.net/MSF.1008.159.
[7] E. Naryono, S. Susanto, M. A. I. Iswara, and C. E. Lusiani, “The Effect of Adding Vinasse for Biochar Production from Bagasse by Pyrolysis Method,” J. Tek. Kim. dan Lingkung., vol. 7, no. 1, pp. 1–8, 2023, doi: 10.33795/jtkl.v7i1.1373.
[8] Y. Prasetiyo, B. Hidayat, and B. Sitorus, “Metode Pirolisis Characteristics Biochar From Biomasses and Pyrolysis,” J. Agrium, vol. 23, no. 1, pp. 17–20, 2020, doi: DOI:https://doi.org/10.30596/agrium.v21i3.2456 17.
[9] J. Sun, F. He, Y. Pan, and Z. Zhang, “Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types,” Acta Agric. Scand. Sect. B Soil Plant Sci., vol. 67, no. 1, pp. 12–22, 2017, doi: 10.1080/09064710.2016.1214745.
[10] P. R. Yaashikaa, P. S. Kumar, S. Varjani, and A. Saravanan, “A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy,” Biotechnol. Reports, vol. 28, 2020, doi: 10.1016/j.btre.2020.e00570.
[11] V. Pasangulapati, K. D. Ramachandriya, A. Kumar, M. R. Wilkins, C. L. Jones, and R. L. Huhnke, “Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass,” Bioresour. Technol., vol. 114, pp. 663–669, 2012, doi: 10.1016/j.biortech.2012.03.036.
[12] L. Burhenne, J. Messmer, T. Aicher, and M. P. Laborie, “The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 101, pp. 177–184, 2013, doi: 10.1016/j.jaap.2013.01.012.
[13] R. Chen, D. Zhang, X. Xu, and Y. Yuan, “Pyrolysis characteristics, kinetics, thermodynamics and volatile products of waste medical surgical mask rope by thermogravimetry and online thermogravimetry-Fourier transform infrared-mass spectrometry analysis,” Fuel, vol. 295, no. March, p. 120632, 2021, doi: 10.1016/j.fuel.2021.120632.
[14] S. Jamilatun, S. Amelia, J. Pitoyo, A. Ma’Arif, and I. Mufandi, “Preparation and Characteristics of Effective Biochar Derived from Sugarcane Bagasse as Adsorbent,” Int. J. Renew. Energy Res., vol. 13, no. 2, pp. 673–680, 2023, doi: 10.20508/ijrer.v13i2.13719.g8737.
[15] A. S. D. Saptati, N. Hidayati, S. Kurniawan, N. W. Restu, and B. Ismuyanto, “Potential Of Sugar Cane_As An Alternativ Potensi Ampas Tebu Sebagai Alternatif Bahan Baku Pembuatan Karbon Aktif,” Nat. B, vol. 3, no. 4, pp. 311–317, 2016.
[16] R. Daniar, “Pemanfaatan Bagas sebagai Bahan Baku Pembuatan Bioetanol dengan Metode Pretreatment Alkali,” ALKIMIA J. Ilmu Kim. dan Terap., vol. 2, no. 1, pp. 1–10, 2018, doi: 10.19109/alkimia.v2i1.2254.
[17] N. Lestari, R. R. D. J. N. Subagyono, and V. L. Allo, “Studi Pirolisis Ampas Tebu dengan Menggunakan Instrumen Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-Gc/Ms),” Pros. Semin. Nas. Kim., pp. 129–135, 2022.
[18] P. Romadhan, Gusmini, and Hermansah, “Karakteristik Pupuk Organik Granul Biokanat Formulasi Biochar Sekam Padi, Senyawa Polimer dan Tanah Liat,” J. Agrium, vol. 20, pp. 18–25, 2023, [Online]. Available: https://ojs.unimal.ac.id/index.php/agrium
[19] D. Asyifa, A. Gani, and R. F. I. Rahmayani, “Karakteristik Biochar Hasil Pirolisis Ampas Tebu (Sacharum Officanarum, Linn) Dan Aplikasinya Pada Tanaman Seledri (Apium Graveolens L),” J. IPA Pembelajaran IPA, vol. 3, no. 1, pp. 15–20, 2019, doi: 10.24815/jipi.v3i1.13292.
[20] F. Rasul et al., Biochar for Agriculture in Pakistan, no. November 2020. 2017. doi: 10.1007/978-3-319-48006-0_4.
[21] J. A. Ippolito, L. Cui, C. Kammann, N. Wrage, and M. Jose, “Feedstock choice , pyrolysis temperature and type influence biochar characteristics : a comprehensive meta ‑ data analysis review,” Biochar, vol. 2, no. 4, pp. 421–438, 2020, doi: 10.1007/s42773-020-00067-x.
[22] E. Nazella, “Pemanfaatan Biochar Berbahan Dasar Ampas Tebu (Saccharum Officinarum Linn) Sebagai Bahan Pembenah Tanah Pada Lahan Bekas Tambang Batubara,” Jurnal Mineral, Energi, dan Lingkungan, vol. 6, no. 2. p. 38, 2023. doi: 10.31315/jmel.v6i2.8096.
[23] A. Winariza, Ilyas, and Sufardi, “Program Studi Agroteknologi, Fakultas Pertanian , Universitas Syiah Kuala 2 Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Syiah Kuaa,” J. Ilm. Mhs. Pertan., vol. 6, no. 2, pp. 79–87, 2021.
[24] P. M. Rogers, P. Z. Yanda, N. M. Pauline, S. Haikola, A. Hansson, and M. Fridahl, “Effects of Biochar on Soil Fertility and Crop Yields: Experience from the Southern Highlands of Tanzania,” Tanzania J. Sci., vol. 48, no. 2, pp. 256–267, 2022, doi: 10.4314/tjs.v48i2.3.
[25] E. Marsyahyo, “Analisis Brunnaeur Emmet Teller (Bet) Topografi Permukaan Serat Rami (Boehmeria Nivea ) Untuk Media Penguatan Pada Bahan Komposit,” J. Flywheel, vol. 2, no. 2, pp. 33–41, 2009, doi: DOI: https://doi.org/10.36040/flywheel.v2i2.332.
[26] F. Amalina, A. S. A. Razak, S. Krishnan, A. W. Zularisam, and M. Nasrullah, “A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability – A review,” Clean. Mater., vol. 3, no. January, p. 100045, 2022, doi: 10.1016/j.clema.2022.100045.
[27] S. Fu et al., “Accurate characterization of full pore size distribution of tight sandstones by low-temperature nitrogen gas adsorption and high-pressure mercury intrusion combination method,” Energy Sci. Eng., vol. 9, no. 1, pp. 80–100, 2021, doi: 10.1002/ese3.817.
[28] B. Hariyono, “Multifungsi Biochar dalam Budidaya Tebu,” Bul. Tanam. Tembakau, Serat Miny. Ind., vol. 13, no. 2, pp. 94–112, 2021, doi: 10.21082/btsm.v13n2.2021.94-112.
[29] M. M. Rahman et al., “Mesoporous carbon: A versatile material for scientific applications,” Int. J. Mol. Sci., vol. 22, no. 9, 2021, doi: 10.3390/ijms22094498.
[30] M. K. Zafeer, R. A. Menezes, H. Venkatachalam, and K. S. Bhat, “Sugarcane bagasse-based biochar and its potential applications: a review,” Emergent Mater., vol. 7, no. 1, pp. 133–161, 2024, doi: 10.1007/s42247-023-00603-y.
[31] C. Y. Jeong, S. K. Dodla, and J. J. Wang, “Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products,” Chemosphere, vol. 142, pp. 4–13, 2016, doi: 10.1016/j.chemosphere.2015.05.084.
[32] S. Jamilatun, J. Pitoyo, Z. Arifah, S. Amelia, and A. Maarif, “Pirolisis Ampas Tebu ( Saccharum officinarum Linn ): Pengaruh Suhu terhadap Yield dan Karakteristik Produk,” Semin. Nas. Penelit. LPPM UMJ, pp. 1–11, 2022.
[33] P. Liu et al., “Effects of Biochar Amendment on Chloropicrin Adsorption and Degradation in Soil,” Energies, vol. 9, no. 11, pp. 1–14, 2016, doi: 10.3390/en9110869.
[34] Y. Jia et al., “Study of the effect of pyrolysis temperature on the Cd2+ adsorption characteristics of biochar,” Appl. Sci., vol. 8, no. 7, 2018, doi: 10.3390/app8071019.
[35] O. D. Nartey and B. Zhao, “Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: An overview,” Adv. Mater. Sci. Eng., vol. 2014, 2014, doi: 10.1155/2014/715398.
[36] C. Yang et al., “Pyrolysis of microalgae: A critical review,” Fuel Process. Technol., vol. 186, no. December 2018, pp. 53–72, 2019, doi: 10.1016/j.fuproc.2018.12.012.
[37] M. U. Jamal and A. J. Fletcher, “Design of Experiments Study on Scottish Wood Biochars and Process Parameter Influence on Final Biochar Characteristics,” Bioenergy Res., vol. 16, no. 4, pp. 2342–2355, 2023, doi: 10.1007/s12155-023-10595-6.
[38] Z. Husain et al., “Nano-sized mesoporous biochar derived from biomass pyrolysis as electrochemical energy storage supercapacitor,” Mater. Sci. Energy Technol., vol. 5, pp. 99–109, 2022, doi: 10.1016/j.mset.2021.12.003.
[39] Y. Huang et al., “Interfacial chemistry of mercury on thiol-modified biochar and its implication for adsorbent engineering,” Chem. Eng. J., vol. 454, no. P4, p. 140310, 2023, doi: 10.1016/j.cej.2022.140310.