Application of Subcritical Water Hydrolysis (SCW) in Producing Reducing Sugar for Biofuel Production

Dian Ranggina, Maria Assumpta Nogo Olea, Hanny F. Sangian, Arief Widjaja, Hijrah Amaliah Azis

Abstract

Abstract. This work aimed to produce reducing sugar from coconut husk using subcritical water hydrolysis. Coconut husk contains cellulose and hemicellulose that can be converted into reducing sugars and then fermented into biofuel. In this study, the subcritical water hydrolysis was carried out in a batch reactor at  temperatures 120-260 oC and pressures, 40, 80, and 160 bar for 1 h. Subcritical water method obtained two products, namely (a) liquid containing sugar and (b) solid containing cellulose, hemicellulose and lignin. The liquid sugars were analyzed by HPLC and DNS, while crystal structure was characterized by XRD and SEM. The highest yield of reducing sugar obtained was 0.25 g/g cellulose+ hemicellulose at 150 oC and 80 bar.

Keywords: 

Biofuel, Coconut husk, Lignocellulose, Reducing sugar, Subcritical water

References

[1] M. Muharja, N. Fadhilah, R. F. Darmayanti, D. Moentamaria, and A. Widjaja, “Optimization Of Subcritical Water Assisted By Nitrogen Prior To Enzymatic Hydrolysis For Reducing Sugar Production,” 2020.

[2] M. Muharja, F. Junianti, D. Ranggina, T. Nurtono, and A. Widjaja, “An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk,” Bioresour Technol, vol. 249, pp. 268–275, Feb. 2018, doi: 10.1016/j.biortech.2017.10.024.

[3] A. H. Rahardjo, R. M. Azmi, M. Muharja, H. W. Aparamarta, and A. Widjaja, “Pretreatment of Tropical Lignocellulosic Biomass for Industrial Biofuel Production : A Review,” IOP Conf Ser Mater Sci Eng, vol. 1053, no. 1, p. 012097, Feb. 2021, doi: 10.1088/1757-899x/1053/1/012097.

[4] H. F. Sangian, A. Widjaja, and Gunawan Setiyo, “Study of the preparation of sugar from high-lignin lignocellulose applying subcritical water and enzymatic hydrolysis: Synthesis and consumable cost evaluation,” 2015. [Online]. Available: https://www.researchgate.net/publication/290252043

[5] R. R. Gonzales, P. Sivagurunathan, A. Parthiban, and S. H. Kim, “Optimization of substrate concentration of dilute acid hydrolyzate of lignocellulosic biomass in batch hydrogen production,” Int Biodeterior Biodegradation, vol. 113, pp. 22–27, Sep. 2016, doi: 10.1016/j.ibiod.2016.04.016.

[6] A. N. Alimny, M. Muharja, and A. Widjaja, “Kinetics of Reducing Sugar Formation from Coconut Husk by Subcritical Water Hydrolysis,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Nov. 2019. doi: 10.1088/1742-6596/1373/1/012006.

[7] S. T. Zuhroh, A. Fatmawati, and A. Widjaja, “Coconut Husk to Reducing Sugar Conversion Using Combined Ultrasound and Surfactant Aided Subcritical Water,” Jurnal Rekayasa Proses, Aug. 2022, doi: 10.22146/jrekpros.69231.

[8] J. M. Prado, T. Forster-Carneiro, M. A. Rostagno, L. A. Follegatti-Romero, F. Maugeri Filho, and M. A. A. Meireles, “Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water,” Journal of Supercritical Fluids, vol. 89, pp. 89–98, 2014, doi: 10.1016/j.supflu.2014.02.017.

[9] Y. H. Ju, L. H. Huynh, N. S. Kasim, T. J. Guo, J. H. Wang, and A. E. Fazary, “Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse,” Carbohydr Polym, vol. 83, no. 2, pp. 591–599, Jan. 2011, doi: 10.1016/j.carbpol.2010.08.022.

[10] Datta and Rathin, “Acidogenic Fermentation of Lignocellulose-Acid Yield and Conversion of Components,” 1981.

[11] K. Ojiabo, O. Julius Ibeawuchi, C. Cosmas Nwanwe, and O. Chinwendu Samuel, “Enzymatic Hydrolysis Of Autoclave Pretreated Sugarcane Bagasse For Bioethanol Production.” [Online]. Available: https://www.researchgate.net/publication/381224508

[12] M. Muharja, N. Fadhilah, T. Nurtono, and A. Widjaja, “Enhancing enzymatic digestibility of coconut husk using nitrogen-assisted subcritical water for sugar production,” Bulletin of Chemical Reaction Engineering and Catalysis, vol. 15, no. 1, pp. 84–95, Apr. 2020, doi: 10.9767/bcrec.15.1.5337.84-95.

[13] S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, “Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance,” 2010. [Online]. Available: http://www.biotechnologyforbiofuels.com/content/3/1/10

[14] I. Öztürk Ilker, S. Irmak, A. Hesenov, and O. Erbatur, “Hydrolysis of kenaf (Hibiscus cannabinus L.) stems by catalytical thermal treatment in subcritical water,” Biomass Bioenergy, vol. 34, no. 11, pp. 1578–1585, 2010, doi: 10.1016/j.biombioe.2010.06.005.

[15] M. Muharja, N. Fadhilah, R. F. Darmayanti, H. F. Sangian, T. Nurtono, and A. Widjaja, “Effect of severity factor on the subcritical water and enzymatic hydrolysis of coconut husk for reducing sugar production,” Bulletin of Chemical Reaction Engineering and Catalysis, vol. 15, no. 3, pp. 786–797, Dec. 2020, doi: 10.9767/BCREC.15.3.8870.786-797.

Refbacks

  • There are currently no refbacks.