Accreditation:
Indexed by:
ISSN:
Tools
H. Zhang and S. Wu, “Subcritical CO2 pretreatment of sugarcane bagasse and its enzymatic hydrolysis for sugar production,” Bioresour Technol, vol. 149, pp. 546–550, 2013, doi: 10.1016/j.biortech.2013.08.159.
K. Kitsubthawee, K. Cheenkachorn, S. Chuetor, K. Rattanaporn, and M. Sriariyanun, “Characterizations of lignocellulose waxes and study of their effects on enzymatic saccharification for biofuel production,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Oct. 2019. doi: 10.1088/1755-1315/346/1/012005.
E. R. Abaide, M. V. Tres, G. L. Zabot, and M. A. Mazutti, “Reasons for processing of rice coproducts: Reality and expectations,” Biomass and Bioenergy, vol. 120. Elsevier Ltd, pp. 240–256, Jan. 01, 2019. doi: 10.1016/j.biombioe.2018.11.032.
M. Muharja, F. Junianti, D. Ranggina, T. Nurtono, and A. Widjaja, “An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk,” Bioresour Technol, vol. 249, pp. 268–275, Feb. 2018, doi: 10.1016/j.biortech.2017.10.024.
H. F. Sangian, A. Widjaja, and Gunawan Setiyo, “Study of the preparation of sugar from high-lignin lignocellulose applying subcritical water and enzymatic hydrolysis: Synthesis and consumable cost evaluation,” 2015. [Online]. Available: https://www.researchgate.net/publication/290252043
R. R. Gonzales, P. Sivagurunathan, A. Parthiban, and S. H. Kim, “Optimization of substrate concentration of dilute acid hydrolyzate of lignocellulosic biomass in batch hydrogen production,” Int Biodeterior Biodegradation, vol. 113, pp. 22–27, Sep. 2016, doi: 10.1016/j.ibiod.2016.04.016.
M. Muharja, N. Fadhilah, R. F. Darmayanti, D. Moentamaria, and A. Widjaja, “Optimization Of Subcritical Water Assisted By Nitrogen Prior To Enzymatic Hydrolysis For Reducing Sugar Production” 2020.
S. T. Zuhroh, A. Fatmawati, and A. Widjaja, “Coconut Husk to Reducing Sugar Conversion Using Combined Ultrasound and Surfactant Aided Subcritical Water,” Jurnal Rekayasa Proses, Aug. 2022, doi: 10.22146/jrekpros.69231.
J. M. Prado, T. Forster-Carneiro, M. A. Rostagno, L. A. Follegatti-Romero, F. Maugeri Filho, and M. A. A. Meireles, “Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water,” Journal of Supercritical Fluids, vol. 89, pp. 89–98, 2014, doi: 10.1016/j.supflu.2014.02.017.
Y. H. Ju, L. H. Huynh, N. S. Kasim, T. J. Guo, J. H. Wang, and A. E. Fazary, “Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse,” Carbohydr Polym, vol. 83, no. 2, pp. 591–599, Jan. 2011, doi: 10.1016/j.carbpol.2010.08.022.
Datta and Rathin, “Acidogenic Fermentation of Lignocellulose-Acid Yield and Conversion of Components,” 1981.
G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Anal Chem, vol. 31, no. 3, pp. 426–428, 1959.
S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, “Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance,” 2010. [Online]. Available: http://www.biotechnologyforbiofuels.com/content/3/1/10
I. Öztürk Ilker, S. Irmak, A. Hesenov, and O. Erbatur, “Hydrolysis of kenaf (Hibiscus cannabinus L.) stems by catalytical thermal treatment in subcritical water,” Biomass Bioenergy, vol. 34, no. 11, pp. 1578–1585, 2010, doi: 10.1016/j.biombioe.2010.06.005.
J. E. G. van Dam et al., “Process for production of high density/high performance binderless boards from whole coconut husk. Part 2: Coconut husk morphology, composition and properties,” Ind Crops Prod, vol. 24, no. 2, pp. 96–104, Sep. 2006, doi: 10.1016/j.indcrop.2005.03.003.