Accreditation:
Indexed by:
ISSN:
Tools
Y. Zhang, L. Duan, and H. Esmaeili, “A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances,” Biomass Bioenergy, vol. 158, p. 106356, Mar. 2022, doi: 10.1016/J.BIOMBIOE.2022.106356.
A. Samir, F. H. Ashour, A. A. A. Hakim, and M. Bassyouni, “Recent advances in biodegradable polymers for sustainable applications,” Materials Degradation, vol. 6, no. 1, pp. 1–28, Aug. 2022, doi: 10.1038/s41529-022-00277-7.
A. M. Ealias and M. P. Saravanakumar, “A review on the classification, characterisation, synthesis of nanoparticles and their application,” IOP Conf Ser Mater Sci Eng, vol. 263, no. 3, p. 032019, Nov. 2017, doi: 10.1088/1757-899X/263/3/032019.
J. K. Patel and Y. V. Pathak, “Emerging technologies for nanoparticle manufacturing,” Emerging Technologies for Nanoparticle Manufacturing, pp. 1–611, Jun. 2021, doi: 10.1007/978-3-030-50703-9.
K. Markandan and W. S. Chai, “Perspectives on Nanomaterials and Nanotechnology for Sustainable Bioenergy Generation,” Materials, vol. 15, no. 21, Nov. 2022, doi: 10.3390/MA15217769.
N. Joudeh and D. Linke, “Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists,” Journal of Nanobiotechnology, vol. 20, no. 1, pp. 1–29, Jun. 2022, doi: 10.1186/S12951-022-01477-8.
V. F. Lemos, R. S. Ortiz, and R. P. Limberger, “Forensic analysis of anabolic steroids tablets composition using attenuated total reflection Fourier transform infrared microspectroscopy (µATR-FTIR) mapping,” J Forensic Sci, vol. 66, no. 3, pp. 837–845, May 2021, doi: 10.1111/1556-4029.14671.
M. Mumtaz et al., “Application of nanomaterials for enhanced production of biodiesel, biooil, biogas, bioethanol, and biohydrogen via lignocellulosic biomass transformation,” Fuel, vol. 315, May 2022, doi: 10.1016/J.FUEL.2021.122840.
M. D. Pandey, “Perspective of nanomaterials for sustainable biofuel and bioenergy production,” Mater Lett, vol. 313, Apr. 2022, doi: 10.1016/J.MATLET.2022.131686.
C. Pandit et al., “Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production,” Heliyon, vol. 9, no. 4, p. 15475, Apr. 2023, doi: 10.1016/j.heliyon.2023.e15475.
I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arabian Journal of Chemistry, vol. 12, no. 7, pp. 908–931, Nov. 2019, doi: 10.1016/J.ARABJC.2017.05.011.
N. Srivastava et al., “Biologically derived copper oxide-based nanocatalyst using Moringa oleifera leaves and its applications in hydrolytic enzymes and biohydrogen production,” Bioresour Technol, vol. 376, p. 128847, May 2023, doi: 10.1016/J.BIORTECH.2023.128847.
M. Luna-delRisco, K. Orupõld, and H. C. Dubourguier, “Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion,” J Hazard Mater, vol. 189, no. 1–2, pp. 603–608, May 2011, doi: 10.1016/J.JHAZMAT.2011.02.085.
H. Shahbeik et al., “Using nanocatalysts to upgrade pyrolysis bio-oil: A critical review,” J Clean Prod, vol. 413, Aug. 2023, doi: 10.1016/J.JCLEPRO.2023.137473.
L. Otero-González, J. A. Field, and R. Sierra-Alvarez, “Inhibition of anaerobic wastewater treatment after long-term exposure to low levels of CuO nanoparticles,” Water Res, vol. 58, pp. 160–168, Jul. 2014, doi: 10.1016/J.WATRES.2014.03.067.
H. I. Mahdi et al., “A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA,” Chemosphere, vol. 319, Apr. 2023, doi: 10.1016/J.CHEMOSPHERE.2023.138003.
S. Alaei, M. Haghighi, J. Toghiani, and B. Rahmani Vahid, “Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance,” Ind Crops Prod, vol. 117, pp. 322–332, Jul. 2018, doi: 10.1016/J.INDCROP.2018.03.015.
P. Sharma et al., “Nanomaterials as highly efficient photocatalysts used for bioenergy and biohydrogen production from waste toward a sustainable environment,” Fuel, vol. 329, p. 125408, Dec. 2022, doi: 10.1016/J.FUEL.2022.125408.
S. I. Akinfalabi, U. Rashid, C. Ngamcharussrivichai, and I. A. Nehdi, “Synthesis of reusable biobased nano-catalyst from waste sugarcane bagasse for biodiesel production,” Environ Technol Innov, vol. 18, p. 100788, May 2020, doi: 10.1016/J.ETI.2020.100788.
M. J. Khalid, Zeshan, A. Waqas, and I. Nawaz, “Synergistic effect of alkaline pretreatment and magnetite nanoparticle application on biogas production from rice straw,” Bioresour Technol, vol. 275, pp. 288–296, Mar. 2019, doi: 10.1016/J.BIORTECH.2018.12.051.
Nurintan binti Jamil, “Properties and Classification of Nanomaterials,” Institute of Nanoscience and Nanotechnology, 2018.
J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein Journal of Nanotechnology, vol. 9, no. 1, pp. 1050–1074, Apr. 2018, doi: 10.3762/BJNANO.9.98.
A. Gandini, T. M. Lacerda, A. J. F. Carvalho, and E. Trovatti, “Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides,” Chem Rev, vol. 116, no. 3, pp. 1637–1669, Feb. 2016, doi: 10.1021/ACS.CHEMREV.5B00264.
J. Dolai, K. Mandal, and N. R. Jana, “Nanoparticle Size Effects in Biomedical Applications,” ACS Appl Nano Mater, vol. 4, no. 7, pp. 6471–6496, Jul. 2021, doi: 10.1021/ACSANM.1C00987.
Rozina, M. Ahmad, and M. Zafar, “Conversion of waste seed oil of Citrus aurantium into methyl ester via green and recyclable nanoparticles of zirconium oxide in the context of circular bioeconomy approach,” Waste Management, vol. 136, pp. 310–320, Dec. 2021, doi: 10.1016/J.WASMAN.2021.10.001.
S. Takami, T. Sato, T. Mousavand, S. Ohara, M. Umetsu, and T. Adschiri, “Hydrothermal synthesis of surface-modified iron oxide nanoparticles,” Mater Lett, vol. 61, no. 26, pp. 4769–4772, Oct. 2007, doi: 10.1016/J.MATLET.2007.03.024.
A. B. Patil, S. R. Lanke, K. M. Deshmukh, A. B. Pandit, and B. M. Bhanage, “Solar energy assisted palladium nanoparticles synthesis in aqueous medium,” Mater Lett, vol. 79, pp. 1–3, Jul. 2012, doi: 10.1016/J.MATLET.2012.03.069.
S. Li, L. Guo, X. He, C. Qiao, and Y. Tian, “Synthesis of uniform Ni nanoparticles encapsulated in ZSM–5 for selective hydrodeoxygenation of phenolics,” Renew Energy, vol. 194, pp. 89–99, Jul. 2022, doi: 10.1016/J.RENENE.2022.05.052.
U. Nithiyanantham et al., “Effect of silica nanoparticle size on the stability and thermophysical properties of molten salts based nanofluids for thermal energy storage applications at concentrated solar power plants,” J Energy Storage, vol. 51, p. 104276, Jul. 2022, doi: 10.1016/J.EST.2022.104276.
B. P. Vinayan, K. Sethupathi, and S. Ramaprabhu, “Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications,” Int J Hydrogen Energy, vol. 38, no. 5, pp. 2240–2250, Feb. 2013, doi: 10.1016/J.IJHYDENE.2012.11.091.
T. Raguram and K. S. Rajni, “Synthesis and characterisation of Cu - Doped TiO2 nanoparticles for DSSC and photocatalytic applications,” Int J Hydrogen Energy, vol. 47, no. 7, pp. 4674–4689, Jan. 2022, doi: 10.1016/J.IJHYDENE.2021.11.113.
L. Shi, Y. He, Y. Huang, and B. Jiang, “Recyclable Fe3O4@CNT nanoparticles for high-efficiency solar vapor generation,” Energy Convers Manag, vol. 149, pp. 401–408, 2017, doi: 10.1016/J.ENCONMAN.2017.07.044.
L. J. Cote, A. S. Teja, A. P. Wilkinson, and Z. J. Zhang, “Continuous hydrothermal synthesis of CoFe2O4 nanoparticles,” Fluid Phase Equilib, vol. 210, no. 2, pp. 307–317, Aug. 2003, doi: 10.1016/S0378-3812(03)00168-7.
B. Baruwati, D. K. Kumar, and S. V. Manorama, “Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH,” Sens Actuators B Chem, vol. 119, no. 2, pp. 676–682, Dec. 2006, doi: 10.1016/J.SNB.2006.01.028.
N. B. Fernandes, Y. Nayak, S. Garg, and U. Y. Nayak, “Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives,” Coord Chem Rev, vol. 478, p. 214977, Mar. 2023, doi: 10.1016/J.CCR.2022.214977.
S. Sur, A. Rathore, V. Dave, K. R. Reddy, R. S. Chouhan, and V. Sadhu, “Recent developments in functionalized polymer nanoparticles for efficient drug delivery system,” Nano-Structures & Nano-Objects, vol. 20, p. 100397, Oct. 2019, doi: 10.1016/J.NANOSO.2019.100397.
Y. Song, Y. Li, Q. Xu, and Z. Liu, “Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: Advances, challenges, and outlook,” Int J Nanomedicine, vol. 12, pp. 87–110, 2017, doi: 10.2147/IJN.S117495.
J. Vivero-Escoto et al., “Mesoporous silica nanoparticles for intracellular controlled drug delivery,” Wiley Online Library, vol. 6, no. 18, pp. 1952–1967, Sep. 2010, doi: 10.1002/smll.200901789.
M. M. Modena, B. Rühle, T. P. Burg, and S. Wuttke, “Nanoparticle Characterization: What to Measure?,” Advanced Materials, vol. 31, no. 32, p. 1901556, 2019, doi: 10.1002/ADMA.201901556.
N. Raval, R. Maheshwari, D. Kalyane, S. R. Youngren-Ortiz, M. B. Chougule, and R. K. Tekade, “Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development,” Basic Fundamentals of Drug Delivery, pp. 369–400, Jan. 2019, doi: 10.1016/B978-0-12-817909-3.00010-8.
D. R. Baer et al., “Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 31, no. 5, Sep. 2013, doi: 10.1116/1.4818423/244836.
S. Mourdikoudis, R. M. Pallares, and N. T. K. Thanh, “Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties,” Nanoscale, vol. 10, no. 27, pp. 12871–12934, Jul. 2018, doi: 10.1039/C8NR02278J.
Roy J Haskell, Physical Characterization of Nanoparticles, 1st Edition. CRC Press, 2006. doi: 10.1201/9780849374555-7.
C. N. R. Rao and K. Biswas, “Characterization of nanomaterials by physical methods,” Annual Review of Analytical Chemistry, vol. 2, pp. 435–462, 2009, doi: 10.1146/ANNUREV-ANCHEM-060908-155236.
D. R. Baer, D. J. Gaspar, P. Nachimuthu, S. D. Techane, and D. G. Castner, “Application of surface chemical analysis tools for characterization of nanoparticles,” Anal Bioanal Chem, vol. 396, no. 3, pp. 983–1002, 2010, doi: 10.1007/S00216-009-3360-1.
A. Kumar and C. K. Dixit, “Methods for characterization of nanoparticles,” Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, pp. 43–58, Jan. 2017, doi: 10.1016/B978-0-08-100557-6.00003-1.
M. G. Bidir, N. K. Millerjothi, M. S. Adaramola, and F. Y. Hagos, “The role of nanoparticles on biofuel production and as an additive in ternary blend fuelled diesel engine: A review,” Energy Reports, vol. 7, pp. 3614–3627, Nov. 2021, doi: 10.1016/J.EGYR.2021.05.084.
K. Kumari, A. Singh, D. Marathe, and P. Pariyar, “Agricultural biomass as value chain developers in different sectors,” Advanced Technology for the Conversion of Waste into Fuels and Chemicals: Volume 1: Biological Processes, pp. 467–509, Jan. 2021, doi: 10.1016/B978-0-12-823139-5.00014-9.
S. Nasreen, M. Nafees, L. A. Qureshi, M. S. Asad, A. Sadiq, and S. D. Ali, “Review of Catalytic Transesterification Methods for Biodiesel Production,” Biofuels-State of Development, Jul. 2018, doi: 10.5772/INTECHOPEN.75534.
D. T. Oyekunle, M. Barasa, E. A. Gendy, and S. K. Tiong, “Heterogeneous catalytic transesterification for biodiesel production: Feedstock properties, catalysts and process parameters,” Process Safety and Environmental Protection, vol. 177, pp. 844–867, Sep. 2023, doi: 10.1016/J.PSEP.2023.07.064.
S. Rezania et al., “Biodiesel production from wild mustard (Sinapis Arvensis) seed oil using a novel heterogeneous catalyst of LaTiO3 nanoparticles,” Fuel, vol. 307, p. 121759, Jan. 2022, doi: 10.1016/J.FUEL.2021.121759.
M. A. Davoodbasha, A. Pugazhendhi, J. W. Kim, S. Y. Lee, and T. Nooruddin, “Biodiesel production through transesterification of Chlorella vulgaris: Synthesis and characterization of CaO nanocatalyst,” Fuel, vol. 300, p. 121018, Sep. 2021, doi: 10.1016/J.FUEL.2021.121018.
S. Kazemifard, H. Nayebzadeh, N. Saghatoleslami, and E. Safakish, “Application of magnetic alumina-ferric oxide nanocatalyst supported by KOH for in-situ transesterification of microalgae cultivated in wastewater medium,” Biomass Bioenergy, vol. 129, p. 105338, Oct. 2019, doi: 10.1016/J.BIOMBIOE.2019.105338.
K. Cholapandian, B. Gurunathan, and N. Rajendran, “Investigation of CaO nanocatalyst synthesized from Acalypha indica leaves and its application in biodiesel production using waste cooking oil,” Fuel, vol. 312, p. 122958, Mar. 2022, doi: 10.1016/J.FUEL.2021.122958.
L. Rocha-Meneses et al., “Application of nanomaterials in anaerobic digestion processes: A new strategy towards sustainable methane production,” Biochem Eng J, vol. 188, p. 108694, Dec. 2022, doi: 10.1016/J.BEJ.2022.108694.
D. Verma, J. S. Paul, S. Tiwari, and S. K. Jadhav, “A Review on Role of Nanomaterials in Bioconversion of Sustainable Fuel Bioethanol,” Waste Biomass Valorization, vol. 13, no. 12, pp. 4651–4667, Dec. 2022, doi: 10.1007/S12649-022-01843-5.
Y. K. Kim and H. Lee, “Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation,” Bioresour Technol, vol. 204, pp. 139–144, Mar. 2016, doi: 10.1016/J.BIORTECH.2016.01.001.
A. Beniwal, P. Saini, A. Kokkiligadda, and S. Vij, “Use of silicon dioxide nanoparticles for β-galactosidase immobilization and modulated ethanol production by co-immobilized K. marxianus and S. cerevisiae in deproteinized cheese whey,” LWT, vol. 87, pp. 553–561, Jan. 2018, doi: 10.1016/J.LWT.2017.09.028.
D. Dong, P. Aleta, X. Zhao, O. K. Choi, S. Kim, and J. W. Lee, “Effects of nanoscale zero valent iron (nZVI) concentration on the biochemical conversion of gaseous carbon dioxide (CO2) into methane (CH4),” Bioresour Technol, vol. 275, pp. 314–320, Mar. 2019, doi: 10.1016/J.BIORTECH.2018.12.075.
Y. Huang, J. Guo, C. Zhang, Z. H.-W. research, and undefined 2016, “Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion,” ElsevierYX Huang, J Guo, C Zhang, Z HuWater research, 2016•Elsevier, vol. 88, pp. 475–480, Jan. 2015, doi: 10.1016/j.watres.2015.10.028.
T. W. M. Amen, O. Eljamal, A. M. E. Khalil, and N. Matsunaga, “Biochemical methane potential enhancement of domestic sludge digestion by adding pristine iron nanoparticles and iron nanoparticles coated zeolite compositions,” J Environ Chem Eng, vol. 5, no. 5, pp. 5002–5013, Oct. 2017, doi: 10.1016/J.JECE.2017.09.030.
W. Wei et al., “Zero valent iron enhances methane production from primary sludge in anaerobic digestion,” Chemical Engineering Journal, vol. 351, pp. 1159–1165, Nov. 2018, doi: 10.1016/J.CEJ.2018.06.160.
A. C. Lizama, C. C. Figueiras, A. Z. Pedreguera, and J. E. Ruiz Espinoza, “Enhancing the performance and stability of the anaerobic digestion of sewage sludge by zero valent iron nanoparticles dosage,” Bioresour Technol, vol. 275, pp. 352–359, Mar. 2019, doi: 10.1016/J.BIORTECH.2018.12.086.
P. Basu, “Introduction,” Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, pp. 1–27, Jan. 2018, doi: 10.1016/B978-0-12-812992-0.00001-7.
J. Fermoso, P. Pizarro, J. M. Coronado, and D. P. Serrano, “Advanced biofuels production by upgrading of pyrolysis bio-oil,” Wiley Interdiscip Rev Energy Environ, vol. 6, no. 4, p. e245, Jul. 2017, doi: 10.1002/WENE.245.
S. P. Pandey, S. K. Singh, A. K. Panda, S. Mandal, and S. Kumar, “Catalytic pyrolysis of Argemone mexicana seeds over synthesized TiO2 nanoparticles to produce renewable fuels,” Sustainable Energy Technologies and Assessments, vol. 56, p. 103091, Mar. 2023, doi: 10.1016/J.SETA.2023.103091.
J. Chanathaworn and C. Y. J, “Upgrading of bio-oil from energy crops via fast pyrolysis using nanocatalyst in a bubbling fluidized bed reactor,” Int Energy J, vol. 22, no. 1, pp. 71–80, 2022, Accessed: Mar. 14, 2024. [Online]. Available: https://www.thaiscience.info/Journals/Article/IENJ/10994527.pdf
E. Heracleous et al., “Bio-oil upgrading via vapor-phase ketonization over nanostructured FeOx and MnOx: catalytic performance and mechanistic insight,” Biomass Convers Biorefin, vol. 7, no. 3, pp. 319–329, Sep. 2017, doi: 10.1007/S13399-017-0268-4.
G. Yang et al., “Hydrogen-rich syngas production from biomass gasification using biochar-based nanocatalysts,” Bioresour Technol, vol. 379, p. 129005, Jul. 2023, doi: 10.1016/J.BIORTECH.2023.129005.
M. M. Marcelino et al., “Supercritical Water Gasification of Coconut Shell Impregnated with a Nickel Nanocatalyst: Box–Behnken Design and Process Evaluation,” Energies (Basel), vol. 16, no. 8, p. 3563, Apr. 2023, doi: 10.3390/EN16083563.
N. Boukis and I. Katharina Stoll, “Gasification of Biomass in Supercritical Water, Challenges for the Process Design—Lessons Learned from the Operation Experience of the First Dedicated Pilot Plant,” Processes , vol. 9, no. 3, p. 455, Mar. 2021, doi: 10.3390/PR9030455.
P. Mishra, S. Thakur, D. M. Mahapatra, Z. A. Wahid, H. Liu, and L. Singh, “Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent – A novel approach,” Int J Hydrogen Energy, vol. 43, no. 5, pp. 2666–2676, Feb. 2018, doi: 10.1016/J.IJHYDENE.2017.12.108.
S. H. Hosseini, A. Taghizadeh-Alisaraei, B. Ghobadian, and A. Abbaszadeh-Mayvan, “Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine,” Energy, vol. 124, pp. 543–552, 2017, doi: 10.1016/J.ENERGY.2017.02.109.
A. Prabu, “Nanoparticles as additive in biodiesel on the working characteristics of a DI diesel engine,” Ain Shams Engineering Journal, vol. 9, no. 4, pp. 2343–2349, Dec. 2018, doi: 10.1016/J.ASEJ.2017.04.004.
G. Najafi, “Diesel engine combustion characteristics using nano-particles in biodiesel-diesel blends,” Fuel, vol. 212, pp. 668–678, Jan. 2018, doi: 10.1016/J.FUEL.2017.10.001.
T. A. M. Abdelwahab, M. K. Mohanty, P. K. Sahoo, and D. Behera, “Impact of nickel nanoparticles on biogas production from cattle manure,” Biomass Convers Biorefin, vol. 13, no. 6, pp. 5205–5218, Apr. 2023, doi: 10.1007/S13399-021-01460-7.
R. Wang et al., “Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion,” Bioresour Technol, vol. 324, p. 124671, Mar. 2021, doi: 10.1016/J.BIORTECH.2021.124671.
N. F. Yacob and A. R. Sulaiman, “NANOCATALYSTS PAVING THE WAY: TRANSESTERIFICATION REACTION OF RICE BRAN OIL TO BIODIESEL USING HETEROGENEOUS BASE CALCIUM OXIDE NANOPARTICLES,” Frontline Social Sciences and History Journal, vol. 3, no. 06, pp. 1–8, Jun. 2023, doi: 10.37547/SOCIAL-FSSHJ-03-06-01.
B. Lu, Y. Ju, T. Abe, and K. Kawamoto, “Hydrogen-enriched producer gas production and chemical conversion to usable gas product through biomass gasification using NiO nanoparticles dispersed on SBA-15,” J Nanosci Nanotechnol, vol. 17, no. 9, pp. 6190–6197, 2017, doi: 10.1166/JNN.2017.14454.
K. H. Kim et al., “ H 2 Production from Yellow Poplar Gasification Over Ni/Spent FCC ,” J Nanosci Nanotechnol, vol. 19, no. 2, pp. 1133–1136, Oct. 2018, doi: 10.1166/JNN.2019.15947.
M. El-Sheekh, M. Elshobary, E. Abdullah, R. Abdel-Basset, and M. Metwally, “Application of a novel biological-nanoparticle pretreatment to Oscillatoria acuminata biomass and coculture dark fermentation for improving hydrogen production,” Springer, vol. 22, no. 1, p. 34, Dec. 2023, doi: 10.1186/s12934-023-02036-y.
S. O. Bitire, E. C. Nwanna, and T. C. Jen, “The impact of CuO nanoparticles as fuel additives in biodiesel-blend fuelled diesel engine: A review,” Energy and Environment, vol. 34, no. 7, pp. 2259–2289, Nov. 2023, doi: 10.1177/0958305X221089217/ASSET/IMAGES/LARGE/10.1177_0958305X221089217-FIG4.JPEG.
S. Bosu and N. Rajamohan, “Nanotechnology approach for enhancement in biohydrogen production- review on applications of nanocatalyst and life cycle assessment,” Fuel, vol. 323, p. 124351, Sep. 2022, doi: 10.1016/J.FUEL.2022.124351.
E. Abdelsalam, M. Samer, Y. A. Attia, M. A. Abdel-Hadi, H. E. Hassan, and Y. Badr, “Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure,” Energy, vol. 120, pp. 842–853, 2017, doi: 10.1016/J.ENERGY.2016.11.137.
H. L. Lien, Y. hsin Shih, W. Yan, and Y. S. Ok, “Preface: Environmental nanotechnol,” J Hazard Mater, vol. 322, p. 324, Jan. 2017, doi: 10.1016/J.JHAZMAT.2016.08.017.
K. Gupta and T. S. Chundawat, “Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw,” Biomass Bioenergy, vol. 143, p. 105840, Dec. 2020, doi: 10.1016/J.BIOMBIOE.2020.105840.
V. Ivanova, P. Petrova, and J. Hristov, “Application in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-coated Magnetic Nanoparticles,” International Review of Chemical Engineering, vol. 3, no. 2, pp. 289–299, May 2011, Accessed: Mar. 14, 2024. [Online]. Available: http://arxiv.org/abs/1105.0619
M. Rai, A. P. Ingle, S. Gaikwad, K. J. Dussán, and S. S. da Silva, “Role of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Ethanol,” Nanotechnology for bioenergy and biofuel production, pp. 153–171, 2017, doi: 10.1007/978-3-319-45459-7_7.
R. Sankaran et al., “The Expansion of Lignocellulose Biomass Conversion Into Bioenergy via Nanobiotechnology,” Frontiers in Nanotechnology, vol. 3, p. 793528, Dec. 2021, doi: 10.3389/FNANO.2021.793528/FULL.
M. J. Khalid, Zeshan, A. Waqas, and I. Nawaz, “Synergistic effect of alkaline pretreatment and magnetite nanoparticle application on biogas production from rice straw,” Bioresour Technol, vol. 275, pp. 288–296, Mar. 2019, doi: 10.1016/J.BIORTECH.2018.12.051.
A. Arora, P. Nandal, J. Singh, and M. L. Verma, “Nanobiotechnological advancements in lignocellulosic biomass pretreatment,” Mater Sci Energy Technol, vol. 3, pp. 308–318, Jan. 2020, doi: 10.1016/J.MSET.2019.12.003.
W. Liu, L. Wang, and R. Jiang, “Specific enzyme immobilization approaches and their application with nanomaterials,” Top Catal, vol. 55, no. 16–18, pp. 1146–1156, Nov. 2012, doi: 10.1007/S11244-012-9893-0.
G. P. Nichols and J. Davis, “Human Health Impacts and Immunotoxicology of Metal Nanoparticles and Nanomaterials – An Overview,” Toxicology of Nanoparticles and Nanomaterials in Human, Terrestrial and Aquatic Systems, pp. 383–400, Jan. 2021, doi: 10.1002/9781119316329.CH14.
E. AM, U. EA, O. IP, E. UE, and G. KE, “Prevalence and Determinants of the use of Enema in under-five children in Akwa Ibom State,” Ibom Medical Journal, vol. 15, no. 2, pp. 108–115, May 2022, doi: 10.61386/IMJ.V15I2.248.