Synthesis and Characterization of Na2/3[Fe1/2Mn1/2]O2 Cathode Material for Sodium Ion Batteries

Diah Agustina Puspitasari, Supriyono Supriyono, Christina Wahyu Kartikowati, Mar’atul Fauziyah, Femiana Gapsari, Vania Mitha Pratiwi, Devina Annora H Br Butar-Butar, Ira Marisa D.N, Rashieka Putri Maghfiroh, Yudha Bhakti Prasetia, Rivanda Adi I. R, Irginata Aqil H, Roihan Rajabi, Umar Khalid Zaki Abdul

Abstract

Abstract. Recently, Na2/3[Fe1/2Mn1/2]O2 has received attention as a potential candidate material for cathode sodium-ion batteries. However, this material was synthesized by a solid-state process, resulting in larger particle size and nonuniform morphology. The larger particle size will sluggish the Na ion diffusion. Here we report the synthesis of Na2/3[Fe1/2Mn1/2]O2 using a simple sol-gel process. The X-ray diffraction revealed that the sample was identified as Na2/3[Fe1/2Mn1/2]O2 with a hexagonal crystal structure. However, the impurities are formed at diffraction angles of 36.28°, 45.03°, and 51.23°. Calcination temperature affects the formation of the crystal phase, grain growth, morphology, and particle size. Our findings provide valuable insight into the development of Na2/3[Fe1/2Mn1/2]O2  material with desirable properties.

 

Keywords:

Sol-Gel, Solid State, Grain Growth, Calcination, Na2/3[Fe1/2Mn1/2]O2

 

Full Text:

PDF

References

1. Ni, Q., Bai, Y., Wu, F., and Wu, C. Polyanion-Type Electrode Materials for Sodium-Ion Batteries. Adv Sci, 2017. 4(3): p. 1-24.

2. Khan, S.A., Ali, S., Saeed, K., Usman, M., and Khan, I. Advanced cathode materials and efficient electrolytes for rechargeable batteries: practical challenges and future perspectives. Journal of Materials Chemistry A, 2019. 7(17): p. 10159-10173.

3. Hirsh, H.S., Li, Y., Tan, D. H. S., Zhang, M., Zhao, E., and Meng, Y. S. Sodium‐Ion Batteries Paving the Way for Grid Energy Storage. Advanced Energy Materials, 2020. 10(32): p. 1-8.

4. Wu, F., Zhao, C., Chen, S., Lu, Y., Hou, Y., Hu, Y. -S., Maier, J., and Yu, Y. Multi-electron reaction materials for sodium-based batteries. Materials Today, 2018. 21(9): p. 960-973.

5. Zhu, Y., Xua, H., Maa, J., Chena, P., and Chen, Y. The recent advances of NASICON-Na3V2(PO4)3 cathode materials for sodium-ion batteries. Journal of Solid State Chemistry, 2023. 317: p. 123669.

6. Zhao, L.N., Zhang, T., Zhao, H. L, and Hou, Y. L. Polyanion-type electrode materials for advanced sodium-ion batteries. Materials Today Nano, 2020. 10: p. 1-26.

7. Buchholz, D., Chagas, L. G., Winter, M., and Passerini, S. P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries. Electrochimica Acta, 2013. 110: p. 208-213.

8. Santamaría, C., Morales, E., Rio, C. d., Herrad´ on, B., Amarillaa, J. M. Studies on sodium-ion batteries: Searching for the proper combination of the cathode material, the electrolyte and the working voltage. The role of magnesium substitution in layered manganese-rich oxides, and pyrrolidinium ionic liquid. Electrochimica Acta, 2023. 439: p. 141654.

9. Zarrabeitia, M., Nobili, F., Lakuntz, O., Carrasco, J., Rojo, T., Cabanas, M. C., and Márquez, M. G. A. M. Role of the voltage window on the capacity retention of P2-Na2/3[Fe1/2Mn1/2]O2 cathode material for rechargeable sodium-ion batteries. Communications Chemistry, 2022. 5(1): p. 1-11.

10. Durmus, Y.E., Zhang, H., Baakes, F., Desmaizieres, G., Hayun, G., Yang, L., Kolek, M., Küpers, V., Janek, J., Mandler, D., Passerini, S., and Ein-Eli, Y. Side by Side Battery Technologies with Lithium‐Ion Based Batteries. Advanced Energy Materials, 2020. 10(24): p. 1-21.

11. Komaba, S., Yoshii, K., Ogata, A., and Nakai, I. Structural and electrochemical behaviors of metastable Li2/3[Ni1/3Mn2/3]O2 modified by metal element substitution. Electrochimica Acta, 2009. 54(8): p. 2353-2359.

12. Saxena, S., Vasavana, H. N., Badolea, M., Dasa, A. K., Deswalb, S., Kumarb, P., and Kumar, S. Tailored P2/O3 phase-dependent electrochemical behavior of Mn-based cathode for sodium-ion batteries. Journal of Energy Storage, 2023. 64: p. 107242.

13. kumar, A., Yadav, N., Bhatt, M., Mishra, N. K., Chaudhary, P., and Singh, R. Sol-Gel derived nanomaterials and it’s Applications: A Review. Research journal of chemical science, 2015 (912):p. 1-6.

14. Yarbrough, R., Davis, K., Dawood, S., and Rathnayake, H. A sol-gel synthesis to prepare size and shape-controlled mesoporous nanostructures of binary (II-VI) metal oxides. RSC Adv, 2020. 10(24): p. 14134-14146.

15. Marshal, A., Singh, P., Music, D., Wolff-Goodrich, S., Evertz, S., Schkell, A., Johnson, D. D., Dehm, G., Liebscher, C. H., Schneider, J. M. Effect of synthesis temperature on the phase formation of NiTiAlFeCr compositionally complex alloy thin films. Journal of Alloys and Compounds, 2021 (854): p. 155178.

16. Muniz, F.T., Miranda, M. A. R., Santos, C. M., and Sasaki, J. M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr A Found Adv, 2016 (72): p. 385-90.

17. Zaid, M.H.M., Matoria, K. A., Aziza, S. H. A., Kamaria, H. M., Fena, Y. W., Yaakoba, Y., Sa'ata, N. K., Gürolc, A., Şakarc, E. Effect of heat treatment temperature to the crystal growth and optical performance of Mn3O4 doped α-Zn2SiO4 based glass-ceramics. Results in Physics, 2019. 15: p. 102569.

18. Babu, C. B., Rao, B. V., Ravia, M., and Babu, S. Structural, microstructural, optical, and dielectric properties of Mn2+: Willemite Zn2SiO4 nanocomposites obtained by a sol-gel method. Journal of Molecular Structure, 2017. 1127: p. 6-14.

19. Kusuma, M., and Chandrappa, G. T. Effect of calcination temperature on characteristic properties of CaMoO4 nanoparticles. Journal of Science: Advanced Materials and Devices, 2019. 4(1): p. 150-157.

20. Singh, R.C., Singh, M. P., Singha, O., and Chandic, P. S. Influence of synthesis and calcination temperatures on particle size and ethanol sensing behaviour of chemically synthesized SnO2 nanostructures. Sensors and Actuators B: Chemical, 2009. 143(1): p. 226-232.

Refbacks

  • There are currently no refbacks.