Response Surface Methodology-Based Parameter Optimization of Candlenut Seeds Extraction (Aleurites moluccana Willd)

Yeni Variyana, Dewi Ermaya, Shintawati Shintawati, Devy Cendekia, Mahfud Mahfud

Abstract

Abstract.  Aleurites moluccana Willd, known candlenut plant, has the potential to be used for vegetable oil, pharmacological purposes, and biofuel. However, there is a lack of knowledge on the optimal extraction conditions for this extraction. The current study aimed to use response surface methodology (RSM) to optimize the Microwave Hydrodiffusion Gravity (MHG) conditions for extraction yield. A three-factor-three-level Box-Behnken design (BBD) was used to investigate the effects of three independent parameters: material size (A), microwave power (B), and extraction time (C). The experimental data for the candlenut seed extraction were analyzed to obtain quadratic polynomial equations. The effects of various parameters on the yield of extraction yield were then examined and analyzed using plots and contours.The results showing extraction yield significantly influenced all independent parameters were p < 0.0001.  Further, The study predicted the optimum conditions for extracting candlenut seeds, which included using material size in 1.378 cm, microwave power of 599.359 W, and extraction time 66.076 min, resulted yield of 5.015%. Based on experimental data conditions, the highest extraction yield was 5.5% of 1 cm, 600 W, and 60 min, respectively, which were in good agreement with the predicted model. The study concluded that the optimized MHG method could be useful in industrial extraction processes and the use of statistical method can optimize the extraction process and reduce the number of experiments required.

Keywords:

Candlenut, RSM, MHG, yield

Full Text:

PDF

References

[1] L. N. Pham et al., “Production of Biodiesel from Candlenut Oil Using a Two-step Co-solvent Method and Evaluation of Its Gaseous Emissions,” J. Oleo Sci., vol. 67, no. 5, pp. 617–626, 2018, doi: 10.5650/jos.ess17220.

[2] M. A. Shaah et al., “Candlenut oil: review on oil properties and future liquid biofuel prospects,” Int. J. Energy Res., vol. 45, no. 12, pp. 17057–17079, 2021, doi: 10.1002/er.6446.

[3] U. Chasanah, F. Yudastama, and D. Rahmasari, “Characteristics and Stability of Candle Nut Oil (Aleurites Moluccana) Nanoemulsion Hair Tonic Preparation,” KnE Med., Sep. 2022, doi: 10.18502/kme.v2i3.11911.

[4] E. Subroto, E. Widjojokusumo, B. Veriansyah, and R. R. Tjandrawinata, “Supercritical CO2 extraction of candlenut oil: process optimization using Taguchi orthogonal array and physicochemical properties of the oil,” J. Food Sci. Technol., vol. 54, no. 5, pp. 1286–1292, 2017, doi: 10.1007/s13197-017-2542-7.

[5] M. R. P. Cabral et al., “Chemical composition and thermal properties of methyl and ethyl esters prepared from Aleurites moluccanus (L.) Willd (Euphorbiaceae) nut oil,” Ind. Crops Prod., vol. 85, pp. 109–116, Jul. 2016, doi: 10.1016/j.indcrop.2016.02.058.

[6] C. Martín, A. Moure, G. Martín, E. Carrillo, H. Domínguez, and J. C. Parajó, “Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba,” Biomass and Bioenergy, vol. 34, no. 4, pp. 533–538, Apr. 2010, doi: 10.1016/j.biombioe.2009.12.019.

[7] H. Sulistyo, S. S. Rahayu, G. Winoto, and I. M. Suardjaja, “Biodiesel Production from High Iodine Number Candlenut Oil,” Int. J. Chem. Mol. Eng., vol. 2, no. 12, pp. 373–376, 2008.

[8] B. M. Siddique, A. Ahmad, A. F. M. Alkarkhi, M. H. Ibrahim, and M. Omar A.K, “Chemical Composition and Antioxidant Properties of Candlenut Oil Extracted by Supercritical CO2,” J. Food Sci., vol. 76, no. 4, pp. C535–C542, May 2011, doi: 10.1111/j.1750-3841.2011.02146.x.

[9] L. P. Handoko and Y. Variyana, “Studi Efektivitas Ekstraksi (Capsaicin) dari Cabai (Capsicum) Dengan Metode MASE (Microwave Assisted Soxhlet Extraction),” Institut Teknologi Sepuluh Nopember, 2017.

[10] A. Farhat, A. S. Tixier, F. Visinoni, M. Romdhane, and F. Chemat, “A surprising method for green extraction of essential oil from dry spices: Microwave dry-diffusion and gravity,” J. Chromatogr. A, vol. 1217, no. 47, pp. 7345–7350, 2010, doi: 10.1016/j.chroma.2010.09.062.

[11] A. Filly, X. Fernandez, M. Minuti, F. Visinoni, G. Cravotto, and F. Chemat, “Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale,” Food Chem., vol. 150, pp. 193–198, 2014, doi: 10.1016/j.foodchem.2013.10.139.

[12] Y. Variyana and M. Mahfud, “Optimization Using Solvent-Free Microwave Hydro-diffusion Gravity Extraction of Onion Oil from Allium cepa by Response Surface Methodology,” IPTEK J. Technol. Sci., vol. 30, no. 3, p. 116, 2019, doi: 10.12962/j20882033.v30i3.5474.

[13] L. Pérez, E. Conde, and H. Domínguez, “Microwave hydrodiffusion and gravity processing of Sargassum muticum,” Process Biochem., vol. 49, no. 6, pp. 981–988, 2014, doi: 10.1016/j.procbio.2014.02.020.

[14] M. A. Vian, X. Fernandez, F. Visinoni, and F. Chemat, “Microwave hydrodiffusion and gravity , a new technique for extraction of essential oils,” J. Chromatogr. A, vol. 1190, pp. 14–17, 2008, doi: 10.1016/j.chroma.2008.02.086.

[15] Y. Variyana, R. S. C. Muchammad, and M. Mahfud, “Box-behnken design for the optimization using solventfree microwave gravity extraction of garlic oil from Allium sativum L.,” IOP Conf. Ser. Mater. Sci. Eng., vol. 673, no. 1, 2019, doi: 10.1088/1757-899X/673/1/012005.

[16] M. Boukroufa, C. Boutekedjiret, L. Petigny, N. Rakotomanomana, and F. Chemat, “Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin,” Ultrason. Sonochem., vol. 24, pp. 72–79, 2015, doi: 10.1016/j.ultsonch.2014.11.015.

[17] S. Périno, J. T. Pierson, K. Ruiz, G. Cravotto, and F. Chemat, “Laboratory to pilot scale: Microwave extraction for polyphenols lettuce,” Food Chem., vol. 204, pp. 108–114, 2016, doi: 10.1016/j.foodchem.2016.02.088.

[18] Z. Huma, A. M. Vian, J. F. Maingonnat, and F. Chemat, “Clean recovery of antioxidant flavonoids from onions: Optimising solvent free microwave extraction method,” J. Chromatogr. A, vol. 1216, no. 45, pp. 7700–7707, 2009, doi: 10.1016/j.chroma.2009.09.044.

[19] P.-Y. Hung and L.-S. Lai, “Structural characterization and rheological properties of the water extracted mucilage of Basella alba and the starch/aqueous mucilage blends,” Food Hydrocoll., vol. 93, pp. 413–421, Aug. 2019, doi: 10.1016/j.foodhyd.2019.02.037.

[20] R. H. Myers, D. C. Montgomery, and C. M. Anderson, Response Response Methodology, 3rd ed. Canada: John Wiley & Sons, Inc., Hoboken, New Jersey Published, 2009.

[21] A. Q. Syafaatullah, Y. Variyana, N. Rohmah, I. Mufaidah, and A. Q. A’yun, “Optimization of UltrasoundAssisted Extraction Parameters from Indigofera Tinctoria L using Response Surface Methodology,” J. Res. Technol., vol. 7, no. 2, pp. 175–186, 2021.

[22] Y. Variyana, M. Mahfud, Z. Ma’sum, B. I. Ardianto, L. P. Syahbana, and D. S. Bhuana, “Optimization of microwave hydro-distillation of lemongrass leaves (Cymbopogon nardus) by response surface methodology,” IOP Conf. Ser. Mater. Sci. Eng., vol. 673, no. 1, p. 012006, Dec. 2019, doi: 10.1088/1757- 899X/673/1/012006.

[23] S. Chamali et al., “Optimization of accelerated solvent extraction of bioactive compounds from Eucalyptus intertexta using response surface methodology and evaluation of its phenolic composition and biological activities,” J. Appl. Res. Med. Aromat. Plants, vol. 35, p. 100464, May 2023, doi: 10.1016/j.jarmap.2023.100464.

[24] M. S. McIntosh, “Can Analysis of Variance Be More Significant?,” Agron. J., vol. 107, no. 2, pp. 706–717, Mar. 2015, doi: 10.2134/agronj14.0177.

[25] N. A. Bahmid, L. Pepping, M. Dekker, V. Fogliano, and J. Heising, “Using particle size and fat content to control the release of Allyl isothiocyanate from ground mustard seeds for its application in antimicrobial packaging,” Food Chem., vol. 308, p. 125573, Mar. 2020, doi: 10.1016/j.foodchem.2019.125573.

[26] B. Huang et al., “Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons,” J. Clim., vol. 30, no. 20, pp. 8179–8205, Oct. 2017, doi: 10.1175/JCLID-16-0836.1.

[27] S. Pimentel-Moral, I. Borrás-Linares, J. Lozano-Sánchez, D. Arráez-Román, A. Martínez-Férez, and A. Segura-Carretero, “Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds,” J. Pharm. Biomed. Anal., vol. 156, pp. 313–322, Jul. 2018, doi: 10.1016/j.jpba.2018.04.050.

[28] I. T. Tomasi, S. C. R. Santos, R. A. R. Boaventura, and C. M. S. Botelho, “Optimization of microwaveassisted extraction of phenolic compounds from chestnut processing waste using response surface methodology,” J. Clean. Prod., vol. 395, no. October 2022, 2023, doi: 10.1016/j.jclepro.2023.136452.

[29] D. Granato, I. A. de Castro, L. S. N. Ellendersen, and M. L. Masson, “Physical Stability Assessment and Sensory Optimization of a Dairy-Free Emulsion Using Response Surface Methodology,” J. Food Sci., vol. 75, no. 3, pp. S149–S155, Apr. 2010, doi: 10.1111/j.1750-3841.2010.01514.x.

Refbacks

  • There are currently no refbacks.