Karakterisasi Kelarutan Silika dari Fly Ash Kelapa Sawit dalam Larutan Basa Kuat (NaOH) dan Asam Lemah (C6H8O7)

Regna Tri Jayanti, Annisa Aulia Furqana Ramzi, Muhammad Hanif Alfitra

Abstract

ABSTRAK. Pertumbuhan industri pabrik kelapa sawit masih cukup potensial di Indonesia. Kajian produk samping hasil produksi pabrik kelapa sawit ini masih belum diolah dengan optimal. Pemanfaatan fly ash sebagai salah satu produk samping masih sangat perlu dikembangkan. Silika merupakan komposisi penyusun fly ash pabrik kelapa sawit yang sangat diminati saat ini karena memiliki potensi aplikasi dalam berbagai tujuan seperti pengolahan limbah, material semikonduktor, dan bahan aditif pertanian. Penelitian pengolahan silika dari abu hasil proses pembakaran tidak terlepas dari metode ektraksi yang sangat bergantung dari karakteristik kelarutan silika terhadap pelarutnya. Penelitian ini bertujuan untuk memberikan informasi karakteritik kelarutan silika yang berasal dari fly ash pabrik kelapa sawit dalam larutan berupa basa kuat (NaOH) dan asam lemah (C6H8O7). Aktivitas kelarutan silika dalam pelarut asam dan basa dilakukan dengan memvariasikan konsentrasi pelarut yaitu 1 M, 2 M, dan 3 M. Proses pelarutan silika dilakukan pada temperatur 60oC dalam waktu 60 menit. Karaketrisasi fly ash dilakukan dengan menggunakan instrumen XRD, XRF, dan SEM yang menunjukkan bahwa senyawa penyusun utama fly ash adalah CaO 68,894% dan SiO2 19,189 % yang terkandung dalam mineral kalsit, portlandite, dan kuarsa dengan morfologi yang heterogen serta ukuran partikel berkisar 200 μm – 300 μm. Hasil pelarutan menunjukkan bahwa kelarutan silika tertinggi diperoleh dalam pelarut asam sitrat 2 M yaitu sebesar 26,35 %.

Kata kunci: Kelarutan, Silika, Asam Lemah, Basa Kuat, NaOH, (C6H8O7)

ABSTRACT. The growth of the palm oil mill industry still has quite potential in Indonesia, but the study of by-products produced by palm oil mills is immobile and not managed optimally. The use of fly ash as one of the by-products urgently necessities to be developed. Silica is a constituent composition of palm oil fly ash that is in great demand today because it has potential applications in various purposes such as sewage treatment, semiconductor materials, and agricultural additives. Research on silica processing from ash from the combustion process is inseparable from the extraction method which is highly dependent on the characteristics of silica solubility to the solvent. This study aims to provide information on the characteristics of silica solubility derived from palm oil mill fly ash in a solution in the form of strong bases (NaOH) and weak acids (C6H8O7). The solubility activity of silica in acidic and alkaline solvents is carried out by varying the solvent concentration of 1 M, 2 M, and 3 M. Silica dissolution process is carried out at a temperature of 60oC within 60 minutes. Fly ash characterization was carried out using XRD, XRF, and SEM instruments which showed that the main constituent compounds of fly ash were CaO 68.894% and SiO2 19.189% contained in calcite, portlandite, and quartz minerals with heterogeneous morphology with particle size between 200 μm – 300 μm. The dissolution results showed that the highest silica solubility was obtained in a 2 M citric acid solvent, which was 26.35%.

Keywords: Solubility, Silica, Weak Acid, Strong Base, NaOH, (C6H8O7)

Full Text:

PDF

References

[1] D. Dhaneswara, J. F. Fatriansyah, F. W. Situmorang, and A. N. Haqoh, “Synthesis of Amorphous Silica from Rice Husk Ash: Comparing HCl and CH3COOH Acidification Methods and Various Alkaline Concentrations,” Int. J. Technol., vol. 11, no. 1, pp. 200–208, 2020, doi: 10.14716/ijtech.v11i1.3335.

2] M. Mupa, C. B. Hungwe, S. Witzleben, C. Mahamadi, and N. Muchanyereyi, “Extraction of silica gel from Sorghum bicolour (L.) moench bagasse ash,” African J. Pure Appl. Chem., vol. 9, no. 2, pp. 12–17, 2015, doi: 10.5897/ajpac2015.0603.

[3] A. Ti-Iatyor, T. Kongkue, and T. Chanadee, “Extraction and characterization of silica powders from natural waste for environmental remediation,” Mater. Sci. Forum, vol. 934 MSF, pp. 147–153, 2018, doi: 10.4028/www.scientific.net/MSF.934.147.

[4] P. A. Handayani, E. Nurjanah, and W. D. P. Rengga, “Pemanfaatan Limbah Sekam Padi Menjadi Silika Gel,” J. Bahan Alam Terbarukan, vol. 3, no. 2, pp. 55–59, 2014, doi: 10.15294/jbat.v3i2.3698.

[5] V. H. Le, C. N. H. Thuc, and H. H. Thuc, “Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method,” Nanoscale Res. Lett., vol. 8, no. 1, pp. 1–10, 2013, doi: 10.1186/1556-276x-8-58.

[6] M. L. Firdaus et al., “Silica extraction from beach sand for dyes removal: Isotherms, kinetics and thermodynamics,” Rasayan J. Chem., vol. 13, no. 1, pp. 249–254, 2020, doi: 10.31788/RJC.2020.1315496.

[7] A. Daulay, Andriayani, Marpongahtun, and S. Gea, “Extraction silica from rice husk with naoh leaching agent with temperature variation burning rice husk,” Rasayan J. Chem., vol. 14, no. 3, pp. 2125–2128, 2021, doi: 10.31788/RJC.2021.1436351.

[8] U. Rattanasak and P. Chindaprasirt, “Influence of NaOH solution on the synthesis of fly ash geopolymer,” Miner. Eng., vol. 22, no. 12, pp. 1073–1078, 2009, doi: 10.1016/j.mineng.2009.03.022.

[9] F. C. Pa, A. Chik, and M. F. Bari, “Palm Ash as an Alternative Source for Silica Production,” MATEC Web Conf., vol. 78, 2016, doi: 10.1051/matecconf/20167801062.

[10] G. A. P. K. Wardhani, N. Nurlela, and M. Azizah, “Silica Content and Structure from Corncob Ash with Various Acid Treatment (HCl, HBr, and Citric Acid),” Molekul, vol. 12, no. 2, p. 174, 2017, doi: 10.20884/1.jm.2017.12.2.382.

[11] M. E. Aphane, F. J. Doucet, R. A. Kruger, L. Petrik, and E. M. van der Merwe, Preparation of Sodium Silicate Solutions and Silica Nanoparticles from South African Coal Fly Ash, vol. 11, no. 8. 2020.

[12] D. R. Mujiyanti, D. Ariyani, and N. Paujiah, “Kajian Variasi Konsentrasi NaOH dalam Ekstraksi Silika dari Limbah Sekam Padi Banjar Jenis ‘PANDAK,’” J. Sains dan Terap. Kim., vol. 15, no. 2, p. 143, 2021, doi: 10.20527/jstk.v15i2.10373.

[13] Z. M. Ulfa, P. Manurung, and P. Karo Karo, “Pengaruh Variasi Konsentrasi NaOH Optimum pada Pembuatan Nanosilika dari Batu Apung,” J. Teor. dan Apl. Fis., vol. 8, no. 1, pp. 11–16, 2020, doi: 10.23960/jtaf.v8i1.2262.

[14] E. M. Opiso, C. B. Tabelin, C. V. Maestre, J. P. J. Aseniero, I. Park, and M. Villacorte-Tabelin, “Synthesis and characterization of coal fly ash and palm oil fuel ash modified artisanal and small-scale gold mine (ASGM) tailings based geopolymer using sugar mill lime sludge as Ca-based activator,” Heliyon, vol. 7, no. 4, p. e06654, 2021, doi: 10.1016/j.heliyon.2021.e06654.

[15] C. P. Faizul, C. Abdullah, and B. Fazlul, “Extraction of silica from palm ashvia citric acid leaching treatment,” Adv. Environ. Biol., vol. 7, no. SPEC. ISSUE 12, pp. 3690–3695, 2013, doi: 10.13140/RG.2.1.1442.5047.

[16] S. Kristianingrum, E. D. Siswani, and A. Fillaeli, “Pengaruh Jenis Asam Pada Sintesis Silika Gel Dari Abu Bagasse dan Uji Sifat Adsorptifnya Terhadap Ion Logam Tembaga (II),” in Prosiding Seminar Nasional Kimia (SNK), 2011, no. November, pp. 281–292.

[17] D. H. Astuti, R. N. Fadhilah, R. Baskara, F. Teknik, and G. Anyar, “Kajian Temperatur Ekstraksi Silika dari Abu Bagasse terhadap Karakteristik Silika Xerogel,” Semin. Nas. Tek. Kim. Soebardjo Brotohardjono XV, vol. DJONO XV P, no. 24 July 2019, pp. 1–5, 2019

Refbacks

  • There are currently no refbacks.