Peningkatan Kompetensi Siswa SMK Muhammadiyah 4 Surakarta mengenai Industri Baterai Lithium Ion

Tika Paramitha, Endah Retno Dyartanti, Arif Jumari, Agus Purwanto, Adrian Nur, Anatta Wahyu Budiman

Abstract

ABSTRAK. Sekolah Menengah Kejuruan (SMK) Muhammadiyah 4 Surakarta memiliki jurusan Kimia Industri yang mempersiapkan tenaga terampil di industri kimia untuk mendukung dalam pengembangan teknologi. Salah satu Industri Kimia yang berkembang saat ini adalah Industri Baterai Lithium Ion (LIB). LIB saat ini digunakan tidak hanya pada perangkat elektronik portabel, seperti komputer dan telepon seluler, tetapi juga untuk kendaraan listrik atau kendaraan hybrid. Oleh karena itu, lulusan SMK dengan Program Keahlian Kimia Industri hendaknya menyiapkan lulusan yang mempunyai kompetensi di bidang teknologi baterai. Dengan kompetensi dosen dalam teknologi produksi material aktif baterai pada skala mini plant dan fasilitas yang mewadai di Pusat Unggulan IPTEK (PUI) PT Teknologi Penyimpanan Energi Listrik, maka sangat memungkinkan dosen untuk mengenalkannya kepada siswa SMK Muhammadiyah 4 Surakarta. Metode yang dilakukan dalam pelatihan ini adalah metode ceramah, diskusi dan praktik. Adapun materi yang disampaikan mengenai baterai lithium ion (aplikasi, jenis, tipe, struktur, proses pembuatan material aktif, dan fabrikasi). Kegiatan praktik yang dilakukan yaitu praktik pembuatan material aktif katoda dengan metode ko-presipitasi dan fabrikasi sel baterai. Hasil kegiatan ini adalah kompetensi siswa dan guru meningkat yang ditunjukkan dengan nilai Pre-Test yang lebih baik dibandingkan dengan Post-Test.

Kata kunci: Baterai Lithium Ion, SMK, Katoda

ABSTRACT. Muhammadiyah 4 Surakarta Vocational High School has a Department of Industrial Chemistry which prepares skilled workers in the chemical industry to support the development of technology. One of the chemical industries that is currently developing is the Lithium Ion Battery (LIB) industry. LIBs are currently used not only in portable electronic devices, such as computers and cell phones but also for electric vehicles or hybrid vehicles. Therefore, Vocational High School with an industrial chemistry expertise program should prepare students who graduate to have competence in the field of battery technology. With the competence of lecturers in the production technology of battery active materials on a mini plant scale and adequate facilities at the Center of Excellence for Electrical Energy Storage Technology, it is very possible for lecturers to introduce technology and battery production facilities to students of Muhammadiyah 4 Surakarta Vocational High School. The methods used in this training are lecture, discussion and practice methods. The material presented was about LIB (application, type, type, structure, active material manufacturing process, and fabrication). The practical activities carried out are the practice of making cathode active materials with the co-precipitation method and battery cell fabrication. The result of this activity is that the competence of students and teachers increases as indicated by a better Pre-Test score compared to the Post-Test score.

Keywords: Lithium Ion, SMK, Cathode

Full Text:

PDF

References

[1] Q. Wang, B. Mao, S. I. Stoliarov, and J. Sun, “A review of lithium ion battery failure mechanisms and fire prevention strategies,” Prog. Energy Combust. Sci., vol. 73, pp. 95–131, 2019, doi: 10.1016/j.pecs.2019.03.002.

[2] Y. Chen et al., “A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards,” J. Energy Chem., vol. 59, pp. 83–99, 2021, doi: 10.1016/j.jechem.2020.10.017.

[3] L. Suhaimi et al., “STUDI TEORITIS MATERIAL KATODA BATERAI ION LITIUM LiFePO4 BERDASARKAN KALKULASI TEORI FUNGSIONAL KERAPATAN,” Hexag. J. Tek. dan Sains , vol. 1, no. 2, pp. 52–56, 2020, [Online]. Available: http://jurnal.uts.ac.id/index.php/hexagon/article/view/617.

[4] A. H. Pandyaswargo, A. D. Wibowo, M. F. N. Maghfiroh, A. Rezqita, and H. Onoda, “The Emerging Electric Vehicle and Battery Industry in Indonesia: Actions around the Nickel Ore Export Ban and a SWOT Analysis,” Batteries, vol. 7, no. 4, p. 80, 2021, doi: 10.3390/batteries7040080.

[5] T. Paramitha et al., “Training of Electric Bike Assembly with Lithium Batteries at SMK Muhammadiyah 6 Karanganyar,” Equilib. J. Chem. Eng., vol. 5, no. 1, p. 15, 2021, doi: 10.20961/equilibrium.v5i1.53965.

[6] Z. Y. Cao, Y. F. Song, X. Shen, and J. H. Fang, “Facile synthesis of electrospun LiNi0.5Co0.2Mn0.3O2 nanofiber as high-performance cathode for lithium-ion batteries,” Key Eng. Mater., vol. 727, pp. 663–669, 2017, doi: 10.4028/www.scientific.net/KEM.727.663.

[7] H. Li, J. Li, X. Ma, and J. R. Dahn, “Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium ion batteries,” J. Electrochem. Soc., vol. 165, no. 5, pp. A1038–A1045, 2018, doi: 10.1149/2.0951805jes.

[8] H. Liu, G. Zhu, L. Zhang, Q. Qu, M. Shen, and H. Zheng, “Controllable synthesis of spinel lithium nickel manganese oxide cathode material with enhanced electrochemical performances through a modified oxalate co-precipitation method,” J. Power Sources, vol. 274, pp. 1180–1187, 2015, doi: 10.1016/j.jpowsour.2014.10.154.

[9] T. H. Cho, S. M. Park, M. Yoshio, T. Hirai, and Y. Hideshima, “Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method,” J. Power Sources, vol. 142, no. 1–2, pp. 306–312, 2005, doi: 10.1016/j.jpowsour.2004.10.016.

[10] K. M. Shaju, G. V. Subba Rao, and B. V. R. Chowdari, “Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries,” Electrochim. Acta, vol. 48, no. 2, pp. 145–151, 2002, doi: 10.1016/S0013-4686(02)00593-5.

[11] L. Xu et al., “Carbonate coprecipitation preparation of Li-rich layered oxides using the oxalate anion ligand as high-energy, high-power and durable cathode materials for lithium-ion batteries,” J. Mater. Chem. A, vol. 3, no. 42, pp. 21219–21226, 2015, doi: 10.1039/c5ta04157k.

Refbacks

  • There are currently no refbacks.