A Review on Antimony-based Perovskite Solar Cells

Ankit Stephen Thomas

Abstract

ABSTRACT. Over the past decade, lead halide perovskite light absorbers have been the conventionally used perovskite light absorbers. However, there is an urgent call for alternative perovskite materials with toxicity levels and poor stability to UV radiations. Antimony-based perovskites have proven to be a material with unique optoelectronic properties, conventional fabrication processes, low-toxicity levels and high stability values. In this review, we look into the structure of antimony perovskites, the various research achievements over recent years, and the challenges and opportunities ahead for this budding technology. The review also highlights the various computational, theoretical and experimental studies done by researchers to highlight the peculiar Lead-free perovskite materials and their distinctive features. Although the efficiency levels of these devices are not very high, the improvements they have made with remarkable stability characteristics make them a viable candidate for commercial perovskite photovoltaics.

Keywords: Perovskite Solar Cells, Photovoltaic Technology, Leadfree Perovskites, Solar Cell Materials, Antimony-based Perovskites

Full Text:

PDF

References

[1] Thomas, A. (2022). High-Efficiency Dye-Sensitized Solar Cells: A Comprehensive Review. Computational And Experimental Research In Materials And Renewable Energy, 5(1), 1. doi: 10.19184/cerimre.v5i1.31475

[2] Hayat, Muhammad & Ali, Danish & Monyake, Cathrine & Alagha, Lana & Ahmed, Niaz. (2018). Solar energy—A look into power generation, challenges, and a solar‐powered future. International Journal of Energy Research. 43. 10.1002/er.4252.

[3] Jin, Z., Zhang, Z., Xiu, J., Song, H., Gatti, T., & He, Z. (2020). A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. Journal Of Materials Chemistry A, 8(32), 16166-16188. doi: 10.1039/d0ta05433j.

[4] Leccisi E and Fthenakis V, Life-cycle environmental impacts of singlejunction and tandem perovskite PVs: a critical review and future perspectives. Prog Energy 2:032002 (2020).

[5] Schileo G and Grancini G, Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. J Mater Chem C 9:67–76 (2021).

[6] Thornton, S.T., Abdelmageed, G., Kahwagi, R.F. and Koleilat, G.I. (2022), progress towards lead-free, efficient, and stable perovskite solar cells. J Chem Technol Biotechnol, 97: 810-829. https://doi.org/10.1002/jctb.6830

[7] Liao W, Zhao D, Yu Y, Grice CR, Wang C, Cimaroli AJ et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv Mater 28:9333–9340 (2016).

[8] B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, I. G. Hill, Y. Yan and D. B. Mitzi, Chem. Mater., 2015, 27, 5622-5632.

[9] J.-P. Correa-Baena, L. Nienhaus, R. C. Kurchin, S. S. Shin, S. Wieghold, N. T. Putri Hartono, M. Layurova, N. D. Klein, J. R. Poindexter, A. Polizzotti, S. Sun, M. G.Bawendi and T. Buonassisi, Chem. Mater., 2018, 30, 3734-3742.

[10] J. Pal, S. Manna, A. Mondal, S. Das, K. V. Adarsh and A. Nag, Angew. Chem. Int. Edit., 2017, 56, 14187-14191.

[11] A. Karmakar, M. S. Dodd, S. Agnihotri, E. Ravera and V. K. Michaelis, Chem. Mater., 2018, 30, 8280-8290.

[12] G. Tang, Z. Xiao, H. Hosono, T. Kamiya, D. Fang and J. Hong, J. Phys. Chem. Lett., 2018, 9, 43-48.

[13] B. Vargas, R. Torres-Cadena, J. Rodríguez-Hernández, M. Gembicky, H. Xie, J. Jiménez-Mier, Y.-S. Liu, E. Menéndez-Proupin, K. R. Dunbar, N. Lopez, P. Olalde-Velasco and D. Solis-Ibarra, Chem. Mater., 2018, 30, 5315-5321.

[14] Jakubas, R.; Decressain, R.; Lefebvre, J. NMR and Dilatometric Studies of the Structure Phase transitions of (CH3NH3)3Sb2I9, and (CH3NH3)3Bi2I9 Crystal. J. Phys. Chem. Solids 1992, 53, 755−759.

[15] Bagautdinov, B.; Novikova, M. S.; Aleksandrova, I. P.; Blomberg, M. K.; Chapuis, G. X-ray study of phase transitions in Cs3Sb2I9 crystal. Solid State Commun. 1999, 111, 361−366.

[16] Yang, Y.; Liu, C.; Cai, M.; Liao, Y.; Ding, Y.; Ma, S.; Liu, X.; Guli, M.; Dai, S.; Nazeeruddin, M. K. Dimension-controlled Growth of Antimony-based Perovskite-like Halide for Lead-free and Semitransparent Photovoltaics. ACS Appl. Mater. Interfaces 2020, 12, 17062−17069.

[17] Zhang, H.; Fang, L.; Yuan, R.-Z. Triammonium nonaiododiantimonate(III), (NH4)3[Sb2I9]. Acta Crystallogr., Sect. E: Struct. Rep. Online 2005, 61, i70−i72.

[18] Zuo, C.; Ding, L. Lead-free Perovskite Materials (NH4)3Sb2IxBr9_x. Angew. Chem., Int. Ed. 2017, 56, 6528−6532.

[19] X.-G. Zhao, J.-H. Yang, Y. Fu, D. Yang, Q. Xu, L. Yu, S.-H. Wei and L. Zhang, J. Am. Chem. Soc., 2017, 139, 2630-2638.

[20] C. Zuo, L. Ding, Angew. Chem. 2017, 129, 6628.

[21] R. X. Yang, K. T. Butler and A. Walsh, J. Phys. Chem. Lett., 2015, 6, 5009-5014.

[22] Li, Y.-J.; Wu, T.; Sun, L.; Yang.; et al. Lead-free and Stable Antimony−Silver-Halide Double Perovskite (CH3NH3)2AgSbI6. RSC Adv. 2017, 7, 35175−35180

[23] Zuo, C.; Ding, L. Lead-free Perovskite Materials (NH4)3Sb2IxBr9_x. Angew. Chem., Int. Ed. 2017, 56, 6528−6532.

[24] Boopathi, K. M.; Karuppuswamy, P.; Singh, A.; Hanmandlu, C.; Lin, L.; Abbas, S. A.; Chang, C. C.; Wang, P. C.; Li, G.; Chu, C. W. Solution-Processable Antimony-based Light-absorbing Materials Beyond Lead Halide Perovskites. J. Mater. Chem. A 2017, 5, 20843−20850.

[25] B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, I. G. Hill, Y. Yan and D. B. Mitzi, Chem. Mater., 2015, 27, 5622-5632.

[26] H. C. Sansom, G. F. S. Whitehead, M. S. Dyer, M. Zanella, T. D. Manning, M. J. Pitcher, T. J. Whittles, V. R. Dhanak, J. Alaria, J. B. Claridge and M. J. Rosseinsky, Chem. Mater., 2017, 29, 1538–1549.J.-P. Correa-Baena, L. Nienhaus, R. C. Kurchin, S. S. Shin, S. Wieghold, N. T. Putri Hartono, M. Layurova, N. D. Klein, J. R. Poindexter, A. Polizzotti, S. Sun, M. G.Bawendi and T. Buonassisi, Chem. Mater., 2018, 30, 3734-3742.

[27] A. Singh, K. M. Boopathi, A. Mohapatra, Y. F. Chen, G. Li and C. W. Chu, ACS Appl. Mater. Interfaces, 2018, 10, 2566-2573.

[28] F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao, Y. Ming, B. Luo, F. Qin, J. Fan, H. Han, L. Zhang and Y. Zhou, J. Am. Chem. Soc., 2018, 140, 1019-1027.

[29] F. Umar, J. Zhang, Z. Jin, I. Muhammad, X. Yang, H. Deng, K. Jahangeer, Q. Hu, H. Song and J. Tang, Adv. Opt. Mater., 2019, 7, 1801368.

[30] Chonamada, T. D.; Dey, A. B.; Santra, P. K. Degradation Studies of Cs3Sb2I9: A Lead-Free Perovskite. ACS Appl. Energy Mater. 2020, 3, 47−55.

[31] Harikesh, P. C.; Mulmudi, H. K.; Ghosh, B.; Goh, T. W.; Teng, Y. T.; Thirumal, K.; Lockrey, M.; Weber, K.; Koh, T. M.; Li, S.; Mhaisalkar, S.; Mathews, N. Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed Photovoltaics. Chem. Mater. 2016, 28, 7496−7504.

[32] S. Weber, T. Rath, K. Fellner, R. Fischer, R. Resel, B. Kunert, T. Dimopoulos, A. Steinegger and G. Trimmel, ACS Appl. Energy Mater., 2019, 2, 539-547.

[33] Li, F.; Wang, Y.; Xia, K.; Hoye, R. L. Z.; Pecunia, V. Microstructural and Photoconversion Efficiency Enhancement of Compact Films of Lead-Free Perovskite Derivative Rb3Sb2I9. J. Mater. Chem. A 2020, 8, 4396−4406.

[34] Hebig, J. C.; Kühn, I.; Flohre, J.; Kirchartz, T. Optoelectronic Properties of (CH3NH3)3Sb2I9Thin Films for Photovoltaic Applications. ACS Energy Lett. 2016, 1, 309−314.

[35] Recent Progress and Challenges in A3Sb2X9-Based Perovskite Solar Cells Khursheed Ahmad and Shaikh M. Mobin ACS Omega 2020 5 (44), 28404-28412 DOI: 10.1021/acsomega.0c04174

[36] Ahmad, K.; Kumar, P.; Mobin, S. M. A Two-Step Modified Sequential Deposition Method-based Pb-Free (CH3NH3)3Sb2I9 Perovskite with Improved Open Circuit Voltage and Performance. ChemElectroChem 2020, 7, 946−950.

[37] Giesbrecht, N.; Weis, A.; Bein, T. Formation of stable 2D Methylammonium Antimony Iodide Phase for Lead-free Perovskitelike Solar Cells. J. Phys.: Energy 2020, 2, 024007.

[38] Karuppuswamy P, Boopathi KM, Mohapatra A, Chen H-C, Wong K-T, Wang P-C et al., Role of a hydrophobic scaffold in controlling the crystallisation of methylammonium antimony iodide for efficient lead-free perovskite solar cells. Nano Energy 45:330–336 (2018).

[39] Y. Yang, C. Liu, M. Cai, Y. Liao, Y. Ding, S. Ma, X. Liu, M. Guli, S. Dai and M. K. Nazeeruddin, ACS Appl. Mater. Interfaces, 2020, 12, 17062-17069.

[40] A. K. Baranwal, H. Masutani, H. Sugita, H. Kanda, S. Kanaya, N. Shibayama, Y. Sanehira, M. Ikegami, Y. Numata, K. Yamada, T. Miyasaka, T. Umeyama, H. Imahori, S. Ito, Nano Convergence 2017, 4, 26.

[41] Chatterjee, S.; Pal, A. J. Tin(IV) Substitution in (CH3NH3)3Sb2I9: Towards Low Band Gap Defect-Ordered Hybrid Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 35194−35205.

[42] Chatterjee, S.; Pal, A. J. Tin(IV) Substitution in (CH3NH3)3Sb2I9: Towards Low Band Gap Defect-Ordered Hybrid Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 35194−35205.

[43] T. Li, X. Wang, Y. Yan and D. B. Mitzi, J. Physi. Chem. Lett., 2018, 9, 3829-3833

[44] C. Zuo and L. Ding, Angew. Chem. Int. Edit., 2017, 56, 6528-6532

[45] Sani F, Shafie S, Lim HN, Musa AO. Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review. Materials (Basel). 2018 Jun 14;11(6):1008. doi: 10.3390/ma11061008. PMID: 29899206; PMCID: PMC6024904.

[46] Jin, Z., Zhang, Z., Xiu, J., Song, H., Gatti, T., & He, Z. (2020). A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. Journal Of Materials Chemistry A, 8(32), 16166-16188. doi: 10.1039/d0ta05433j

[47] W. B. Dai, S. Xu, J. Zhou, J. Hu, K. Huang and M. Xu,Sol. Energy Mater. Sol. C., 2019, 192, 140-146.

[48] Adonin, S. A.; Frolova, L. A.; Sokolov, M. N.; Shilov, G. V.; Korchagin.; et al. Antimony (V) Complex Halides: Lead-Perovskite-Like Materials for Hybrid Solar Cells. Adv. Energy Mater. 2018, 8, 1701140.

[49] Li, Y.; Xu, Z.; Liu, X.; Tao.; et al. Two Heteromorphic Crystals of Antimony-Based Hybrids Showing Tunable Optical Band Gaps and Distinct Photoelectric Responses. Inorg. Chem. 2019, 58, 6544−6549

[50] Jia, X.; Ding, L. A Low-temperature Solution-processed Copper Antimony Iodide Rudorffite for Solar Cells. Sci. China Mater. 2019, 62, 54−58.

[51] Vargas, B.; Ramos, E.; Perez- Gutierrez, E.; Alonso, J. C.; Solis-Ibarra, D. A Direct Bandgap Copper−Antimony Halide Perovskite. J. Am. Chem. Soc. 2017, 139, 9116−9119.

[52] Nie, R.; Mehta, A.; Park, B.-W.; Kwon, H.-W.; Im, J.; Seok, S. I. Mixed sulfur and iodide-based lead-free perovskite solar cells. J. Am. Chem. Soc. 2018, 140, 872−875.

[53] A.F. Akbulatov, L.A. Frolova, N.N. Dremova, I. Zhidkov, V.M. Martynenko, S. A. Tsarev, S.Y. Luchkin, E.Z. Kurmaev, S.M. Aldoshin, K.J. Stevenson, P. A. Troshin, Light or heat: what is killing lead halide perovskites under solar cell operation conditions? J. Phys. Chem. Lett. 11 (2020) 333–339, https://doi.org/10.1021/acs.jpclett.9b03308.

[54] A. Poglitsch, D. Weber, Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy, J. Chem. Phys. 87 (1987) 6373–6378, https://doi.org/10.1063/1.453467.

[55] M. Wang, V. Vasudevan, S. Lin, J. Jasieniak, S.P. Russo, N. Birbilis, N. V. Medhekar, Molecular mechanisms of thermal instability in hybrid perovskitelight absorbers for photovoltaic solar cells, J. Mater. Chem. A. 8 (2020)17765–17779, https://doi.org/10.1039/d0ta05356b.

[56] S. Ito, S. Tanaka, K. Manabe, H. Nishino, Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells, J. Phys. Chem. C118 (2014) 16995–17000, https://doi.org/10.1021/jp500449z.

[57] T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nat. Commun. 4 (2013) 1–8, https://doi.org/10.1038/ncomms3885.

[58] R.S. Sanchez, E. Mas-Marza, Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells, Sol. Energy Mater. Sol. Cells 158 (2016) 189–194, https://doi.org/10.1016/j.solmat.2016.03.024.

[59] T. Sekimoto, T. Matsui, T. Nishihara, R. Uchida, T. Sekiguchi, T. Negami, Influence of a hole-transport layer on light-induced degradation of mixed organicinorganic halide perovskite solar cells, ACS Appl. Energy Mater. 2 (2019) 5039–5049, https://doi.org/10.1021/acsaem.9b00709.

[60] A. Guerrero, J. You, C. Aranda, Y.S. Kang, G. Garcia-Belmonte, H. Zhou, J. Bisquert, Y. Yang, Interfacial degradation of planar lead halide perovskite solar cells, ACS Nano 10 (2016) 218–224, https://doi.org/10.1021/acsnano.5b03687.

[61] K. Domanski, E.A. Alharbi, A. Hagfeldt, M. Gr¨atzel, W. Tress, Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells, Nat. Energy 3 (2018) 61–67, https://doi.org/10.1038/s41560-017-0060-5.

[62] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Il Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett. 13 (2013) 1764–1769, https://doi.org/10.1021/nl400349b.

[63] L. Xie, P. Song, L. Shen, J. Lu, K. Liu, K. Lin, W. Feng, C. Tian, Z. Wei, Revealing the compositional effect on the intrinsic long-term stability of perovskite solar cells, J. Mater. Chem. A. 8 (2020) 7653–7658, https://doi.org/10.1039/d0ta01668c.

[64] J. Cao, J. Jiang, N. Li, Y. Dong, Y. Jia, S. Tao, N. Zhao, Alkali-cation-enhanced benzylammonium passivation for efficient and stable perovskite solar cellsfabricated through sequential deposition, J. Mater. Chem. A. 8 (2020) 19357–19366, https://doi.org/10.1039/d0ta04680a.

[65] S. Ahmad, P. Fu, S. Yu, Q. Yang, X. Liu, X. Wang, X. Wang, X. Guo, C. Li, Dionjacobson phase 2D layered perovskites for solar cells with ultrahigh stability, Joule 3 (2019) 794–806, https://doi.org/10.1016/j.joule.2018.11.026.

[66] C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu, J. Xia, S. Zuo, Y. Hu, X. Gao, W. Hui, L. Chao, T. Niu, M. Fang, H. Lu, H. Dong, H. Yu, S. Chen, X. Ran, L. Song, B. Li, J. Zhang, Y. Peng, G. Shao, J. Wang, Y. Chen, G. Xing, W. Huang, Twodimensional Ruddlesden–Popper layered perovskite solar cells based on phasepure thin films, Nat. Energy 6 (2021) 38–45, https://doi.org/10.1038/s41560-020-00721-5.

[67] J.H. Kim, S.T. Williams, N. Cho, C.C. Chueh, A.K.Y. Jen, Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating, Adv. Energy Mater. 5 (2015) 2–7, https://doi.org/10.1002/aenm.201401229.

[68] Y. Sun, Y. Wu, X. Fang, L. Xu, Z. Ma, Y. Lu, W.H. Zhang, Q. Yu, N. Yuan, J. Ding, Long-term stability of organic-inorganic hybrid perovskite solar cells with high efficiency under high humidity conditions, J. Mater. Chem. A. 5 (2017) 1374–1379, https://doi.org/10.1039/c6ta08117g.

[69] J. Jin, H. Li, C. Chen, B. Zhang, L. Xu, B. Dong, H. Song, Q. Dai, Enhanced performance of perovskite solar cells with zinc chloride additives, ACS Appl. Mater. Interfaces 9 (2017) 42875–42882, https://doi.org/10.1021/acsami.7b15310.

[70] X. Liu, J. Wu, Y. Yang, D. Wang, G. Li, X. Wang, W. Sun, Y. Wei, Y. Huang, M. Huang, L. Fan, Z. Lan, J. Lin, K.C. Ho, Additive engineering by bifunctional guanidine sulfamate for highly efficient and stable perovskites solar cells, Small 16 (2020) 1–9, https://doi.org/10.1002/smll.202004877.

[71] S. Castro-Hermosa, S.K. Yadav, L. Vesce, A. Guidobaldi, A. Reale, A. Di Carlo, T. M. Brown, Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules, J. Phys. D Appl. Phys. 50 (2017), 33001, https://doi.org/10.1088/1361-6463/50/3/033001.

[72] Y. Dou, D. Wang, G. Li, Y. Liao, W. Sun, J. Wu, Z. Lan, Toward highly reproducible, efficient, and stable perovskite solar cells via interface engineering with CoO nanoplates, ACS Appl. Mater. Interfaces 11 (2019) 32159–32168, https://doi.org/10.1021/acsami.9b11039.

[73] F. Hou, F. Jin, B. Chu, Z. Su, Y. Gao, H. Zhao, P. Cheng, J. Tang, W. Li, Hydrophobic hole-transporting layer induced porous PbI2 film for stable and efficient perovskite solar cells in 50% humidity, Sol. Energy Mater. Sol. Cells 157 (2016) 989–995, https://doi.org/10.1016/j.solmat.2016.08.024.

[74] Y. Deng, Q. Dong, C. Bi, Y. Yuan, J. Huang, Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer, Adv. Energy Mater. 6 (2016) 1–6, https://doi.org/10.1002/aenm.201600372.

[75] Z. Fu, M. Xu, Y. Sheng, Z. Yan, J. Meng, C. Tong, D. Li, Z. Wan, Y. Ming, A. Mei, Y. Hu, Y. Rong, H. Han, Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long-term outdoor stability, Adv. Funct.Mater. 29 (2019) 1–7, https://doi.org/10.1002/adfm.201809129.

[76] F. Matteocci, L. Cin`a, E. Lamanna, S. Cacovich, G. Divitini, P.A. Midgley, C. Ducati, A. Di Carlo, Encapsulation for long-term stability enhancement of perovskite solar cells, Nano Energy 30 (2016) 162–172, https://doi.org/10.1016/j.nanoen.2016.09.041.

[77] L. Meng, J. You, T.F. Guo, Y. Yang, Recent advances in the inverted planar structure of perovskite solar cells, Acc. Chem. Res. 49 (2016) 155–165, https://doi.org/10.1021/acs.accounts.5b00404.

[78] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, Nat. Commun. 5 (2014) 1–7, https://doi.org/10.1038/ncomms6784.

[79] Y. Zhong, M. Hufnagel, M. Thelakkat, C. Li, S. Huettner, Role of PCBM in the suppression of hysteresis in perovskite solar cells, Adv. Funct. Mater. 30 (2020), https://doi.org/10.1002/adfm.201908920.

[80] D.Y. Son, S.G. Kim, J.Y. Seo, S.H. Lee, H. Shin, D. Lee, N.G. Park, Universal approach toward hysteresis-free perovskite solar cell via defect engineering, J. Am. Chem. Soc. 140 (2018) 1358–1364, https://doi.org/10.1021/jacs.7b10430.

[81] Dibyajyoti Saikia, Atanu Betal, Jayanta Bera, Satyajit Sahu, Progress and challenges of halide perovskite-based solar cell- a brief review, Materials Science in Semiconductor Processing, Volume 150, 2022, 106953, ISSN 1369-8001, https://doi.org/10.1016/j.mssp.2022.106953.

[82] Bonabi Naghadeh S, Luo B, Abdelmageed G, Pu Y-C, Zhang C and Zhang JZ, Photophysical properties and improved stability of organic–inorganic perovskite by surface passivation. J Phys Chem C 122:15799–15818 (2018).

[83] Kopacic I, Friesenbichler B, Hoefler SF, Kunert B, Plank H, Rath T et al., Enhanced performance of germanium halide perovskite solar cells through compositional engineering. ACS Appl Energy Mater 1: 343–347 (2018).

[84] Xu H, Jiang Y, He T, Li S, Wang H, Chen Y et al., Orientation regulation of tin-based reduced-dimensional perovskites for highly efficient and stable Photovoltaics. Adv Funct Mater 29:1807696 (2019).

[85] Yu B-B, Liao M, Yang J, Chen W, Zhu Y, Zhang X et al., Alloy-induced phase transition and enhanced photovoltaic performance: the case of Cs3Bi2I9−xBrx perovskite solar cells. J Mater Chem A 7:8818–8825 (2019).

[86] Xu X, Chueh C-C, Yang Z, Rajagopal A, Xu J, Jo SB et al., Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy 34:392–398 (2017).

[87] Tai Q, Guo X, Tang G, You P, Ng T-W, Shen D et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew Chem Int Ed 58:806–810 (2019).

[88] Dubey A, Adhikari N, Mabrouk S, Wu F, Chen K, Yang S et al., A strategic review on processing routes towards highly efficient perovskite solar cells. J Mater Chem A 6:2406–2431 (2018).

[89] Zhang, S.; Ye, L.; Zhao, W.; Yang, B.; Wang, Q.; Hou, J. Realising over 10% efficiency in polymer solar cell by device optimisation. Sci. China Chem. 2015, 58, 248–256.

[90] Gao, K.; Zhu, Z.; Xu, B.; Jo, S.; Kan, Y.; Peng, X.; Jen, A.K. Highly Efficient Porphyrin-Based OPV/Perovskite Hybrid Solar Cells with Extended Photoresponse and High Fill Factor. Adv. Mater. 2017, 29, 1703980.

[91] Thomas, A. S. Synthesis and Efficiency Analysis of Perovskite Solar Cells.

[92] Thomas, A.S. Film Properties Using Metal Salts Washing for Perovskite Solar Cells. Preprints 2022, 2022070192 (doi: 10.20944/preprints202207.0192.v1).

[93] Thomas, Ankit Stephen. 2022. "Charge Transport Materials, Bismuth and Copper-Based Perovskite Solar Cells: A Review". Future Energy 1 (3):19-43. https://fupubco.com/fuen/article/view/30.

[94] AWakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase, Y. Murata, Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH 3PbI3 layers, Chem. Lett. 43 (2014) 711–713, https://doi.org/10.1246/cl.140074.

[95] A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. Van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells Chem. Mater. 27 (2015) 3397–3407, https://doi.org/10.1021/acs.chemmater.5b00660.

Refbacks

  • There are currently no refbacks.