Accreditation:
Indexed by:
ISSN:
Tools
ABSTRAK. Konsumsi energi pada sektor transportasi di Indonesia sangat besar dikarenakan penggunaan BBM yang sangat besar. Besarnya proporsi penggunaan BBM untuk transportasi juga diikuti dengan besarnya subsidi pemerintah untuk BBM. Data sepanjang tahun 2010-2020 menunjukkan realisasi subsidi BBM selalu lebih besar dibandingkan dengan yang dianggarkan. Sehingga perlunya alternatif untuk mengurangi konsumsi BBM pada sektor transportasi. Dari sisi teknis peluang penggunaan bioetanol generasi 1 (G1) berbahan molasses mudah di aplikasikan karena proses yang sederhana. Dari analisis ekonomi terlihaat bahawa projek ini layak dilakukan ketika NPV dan DCFROR bernilai positif, sehingga saat harga molasses 1.500,00/ Kg dan harga bioetanol 15.000,00/ liter projek ini layak dilakukan, begitu juga ketika harga molasses 2.061,00/ Kg dan harga bioetanol 16.000,00/ liter serta ketika harga molasses 2.061,00/ Kg dan harga bioetanol 15.000,00/ liter, namun ketika harga molasses 2.061,00/ Kg dan harga bioetanol 12.113,00/ liter projek ini tidak layak dilakukan karena NPV dan DCFROR bernilai negatif. Dari hasil simulasi tersebut diketahui bahwa harga molases dan bioetanol sangat berpengaruh terhadap realisasi substitusi BBM dengan bioetanol, selain itu ketersedian bahan baku yaitu molasses juga perlu diperhatikan untuk menjaga kontinuitas proses.
Kata Kunci: Bahan Bakar, Bioetanol, Ekonomi, Transportasi
ABSTRACT. Energy consumption in the transportation sector in Indonesia is very large due to the very large use of fuel. A large proportion of the use of fuel for transportation is also followed by the number of government subsidies for fuel. Data throughout 2010-2020 show that the realization of fuel subsidies is always higher than the budgeted one. So the need for alternatives to reduce fuel consumption in the transportation sector. From a technical point of view, the opportunity to use bioethanol generation 1 (G1) which is made from molasses is easy to apply because of the simple process. From the economic analysis, it can be seen that this project is feasible when the NPV and DCFROR are positive, so when the molasses price is 1.500,00/Kg and the bioethanol price is 15,000.00/liter this project is feasible, as well as when the molasses price is 2.061,00/Kg and the price of molasses is 2.061,00/Kg. bioethanol 16.000,00/liter and when the price of molasses is 2.061,00/Kg and the price of bioethanol is 15.000,00/liter, but when the price of molasses is 2.061,00/Kg and the price of bioethanol is 12.113,00/liter this project is not feasible because of NPV and DCFROR have a negative value. From the simulation results, it is known that the price of molasses and bioethanol is very influential on the realization of the substitution of fuel with bioethanol, the availability of raw materials or molasses also needs to be considered to maintain the continuity of the process.
Keywords: Fuel, Bioethanol, Economy, Transportation
[1] A.C. Adi, F. Lasnawati, Handbook of Energy and Economic Statistics of Indonesia, Ministry of Energy and Mineral Resources Republic of Indonesia, Jakarta, 2021.
[2] A. Maghfiroh, “Efisiensi Energi di Sektor Transportasi, Studi Kasus di Indonesia dan Uni Eropa,” Publish What You Pay Indonesia (2019). https://pwypindonesia.org/id/efisiensi-energi-di-sektor-transportasi-studi-kasus-di-indonesia-dan-uni-eropa/.
[3] “Pengembangan Energi Terbarukan untuk Substitusi BBM,” Kementerian Koordinator Bidang Perekonomian (2021). https://www.ekon.go.id/publikasi/detail/3087/pengembangan-energi-terbarukan-untuk-substitusi-bbm
[4] M.S. Boedoyo, “Prospek Pemanfaatan Bioethanol Sebagai Pengganti BBM di Indonesia,” Pros. Peluncuran Buku Outlook Energi Indones. 2014 Semin. Bersama BPPT Dan BKK-PII. 55–63 (2015). https://www.researchgate.net/publication/276412634_Prospek_Pemanfaatan_Bioethanol_Sebagai_Pengganti_BBM_di_Indonesia.
[5] A.A. Sari, D. Putri, Ary Mauliva Hada Dahnum, D. Burhani, D. Mansur, Perkembangan Bioetanol G2: Teknologi dan Perspektif, LIPI Press, Jakarta, 2019.
[6] P. Sementa, B.M. Vaglieco, F. Catapano, “Thermodynamic and optical characterizations of a high performance GDI engine operating in homogeneous and stratified charge mixture conditions fueled with gasoline and bio-ethanol,” Fuel. 96 204–219 (2012). https://doi.org/10.1016/j.fuel.2011.12.068.
[7] D. Turner, H. Xu, R.F. Cracknell, V. Natarajan, X. Chen, “Combustion performance of bio-ethanol at various blend ratios in a gasoline direct injection engine,” Fuel. 90 1999–2006 (2011). https://doi.org/10.1016/j.fuel.2010.12.025.
[8] I.G. Wiratmaja, E. Elisa, “Kajian Peluang Pemanfaatan Bioetanol Sebagai Bahan Bakar Utama Kendaraan Masa Depan Di Indonesia,” J. Pendidik. Tek. Mesin Undiksha. 8 1–8 (2020). https://doi.org/10.23887/jptm.v8i1.27298.
[9] Cipto, F. Sariman, D. Parenden, “Korosi pada Tangki Bahan Bakar yang Disebabkan oleh Penggunaan Bahan Bakar Premium bercampur Bioethanol,” J. MJEME. 1 25–29 (2018).
[10] S.K. Wahono, V.T. Rosyida, C. Darsih, D. Pratiwi, A. Frediansyah, Hernawan, “Optimization of Simultaneous Saccharification and Fermentation Incubation Time Using Cellulose Enzyme for Sugarcane Bagasse on the Second-generation Bioethanol Production Technology,” Energy Procedia. 65 331–336 (2015). https://doi.org/10.1016/j.egypro.2015.01.061.
[11] W. Zhang, A. Geng, “Improved ethanol production by a xylosefermenting recombinant yeast strain constructed through a modified genome shuffling method,” Biotechnol. Biofuels. 5 1–11 (2012).
[12] G. Kunjana, “LIPI: Perlu Peta Jalan Konkret Capai Target E5,” Investor.id (2018). https://investor.id/archive/lipi-perlu-peta-jalan-konkret-capai-target-e5.
[13] H. Wulansari, “Ethanol Dilemma,” Pertamina. 1 (2019). https://www.pertamina.com/id/news-room/market-insight/ethanol-dilemma.
[14] R.N. Suryana, T. Sarianti, Feryanto, “KELAYAKAN INDUSTRI KECIL BIOETANOL BERBAHAN BAKU MOLASES DI JAWA TENGAH,” J. Manaj. Agribisnis. 9 127–136 (2012).
[15] R. Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes, 4th ed., Prentice Hall, New York, 2012. https://doi.org/10.1002/1521-3773(20010316)40:63.3.CO;2-C.