Batch mode treatment of wastewater from the Maroua artisanal tannery using silica extracted from rice husks and silica/sand mixture

Jean Marie Dangwang Dikdim, Germain Vaimata Djinsi, Cornelius Tsamo

Abstract

ABSTRACT. Tanning activity consumes high volumes of water resulting in large volumes of highly colored polluted wastewater being discharged to the environment. In this study, the discoloration of the wastewater of the local artisanal tannery using SiO2 synthesized from rice husks and silica/sand mixture at different process conditions was investigated. The results revealed that the discoloration process is favorable for both adsorbents at 35oC with maximum of 61% for sand/SiO2 mixture system and 64% for SiO2 system. The presence of NaCl electrolyte enhanced the discoloration for both adsorbents increasing from 44% for sand/SiO2 mixture at 0 NaCl to 72% at 0.5M NaCl and from 49% for SiO2 system at 0 NaCl to 63 % at 0.5M NaCl. Increasing the amount of sand from 0.2 to 1 g at fixed SiO2 of 0.1 g in sand/SiO2 mixture showed discoloration from 40-41 % while increasing SiO2 in SiO2 alone system from 0.05 to 0.5 g had a discoloration of 45-71%. Results of this study shows that sand a very abundant local and worldwide material can be complemented with silica in a very low cost tannery wastewater discoloration process.

Keywords: Tannery, Wastewater, Silica, Sand, Discoloration

Full Text:

PDF

References

[1] V. J. Sundar, R Ramesh, P. S. Rao, P. Saravanan, B. Sridharnath and C. Muralidharan, “Water Management in leather industry”. J. Scientific Industrial Research, Vol. 60, pp 443-450, 2001.

[2] P. D. Djantio, C. Tsamo, M. R. S. Topet, F.T. Matsinkou, F.T. and B. B. Loura, “Utilisation of waste from the production of millet derived local drink as adsorbent for phosphate removal from aqueous solution”. Indian Chem. Eng., Vol 61(3), pp 309-325, 2019. https://doig.org/10.1080/00194506.2019.1569562.

[3] C. Tsamo, M. Assabe, J. Argue and S. O. Ihimbru, “Discoloration of methylene blue and slaughter house wastewater using maize cob biochar produced using a constructed burning chamber: A comparative study.” Sci. Afr., Vol 3, pp 1-13, 2019. https://doi.org/10.1016/j.sciaf.2019.e00078.

[4] P. Abba, C. Tsamo C., S. Balkissou, C. Djaoyang, Téri Téri, R. Danga and Wahabou, “Physico-chemical characterization of local tannery waste water before and after flocculation treatment”. A., Int. J. Chem. Vol. 11 (2); pp 77-85, 2019. https://doi.org/10.5539/ijc.v11n2p77.

[5] M. Chowdhury, M. G. Mostafa, T. K. Biswas, and A. K. Saha, “Treatment of leather industrial effluents by filtration and coagulation processes”. Water Res. Ind, Vol 3, pp 11-22, 2013. https://doi.org/10.1016/j.wri.2013.05.002.

[6] A. A. Moulay, S. Souabi, A. Yaacoubi, N. Zaim and F.Z., Bouthir “Les effluents de tannerie : caractérisation et impact sur le milieu marin”. J. Water Sci., Vol. 21, pp 463-473, 2008. https//doi.org/10.7202/019168ar.

[7] M. Muthukkauppan, and P. Parthiban, “A study on the physicochemical characteristics of tannery effluent collected from Chennai”. Int. Res. J. Eng. Technol., Vol 5(3), pp 24-28, 2018.

[8] W. Tao, L. Qi, H. Duan, and S. Liu, “A new sand adsorbent for the removal and reuse of nickel ions from aqueous solutions”. Water Sci. Technol, Vol 75, pp 1812-1819, 2017. https://doi.org/10.2166/wst.2017.050.

[9] M. Andrunik, and T. Bajda, “Removal of Pesticides from Waters by Adsorption: Comparison between Synthetic Zeolites and Mesoporous Silica Materials. A Review.” Materials, Vol 14, pp, 3532, 2021. https://doi.org/10.3390/ma14133532.

[10] F. Nworie, F, Nwabue, F., W. Oti, E. Mbam, B. U. Nwali, “Removal of methylene blue from aqueous solution using activated rice husk biochar: Adsorption isotherms, kinetics and error analysis”. J. Chil. Chem. Soc., Vol 64, pp 4365-4376, 2019. https://doi.org/10.4067/s0717-97072019000104365.

[11] A. L. M. Gomes, H. M. Pedro, H.M. Andrade, Hugo, G. Palhares, M. R. Dumont, D. C. F. Soares, C. Volkringer, M. Houmard and E. H. M. Nunes, “Facile sol-gel synthesis of silica sorbents for the removal of organic pollutants from aqueous media”. J. Mater. Res. Technol., Vol 15, pp 4580-4594, 2021. https://doi.org/10.1016/j.jmrt.2021.10.069.

[12] K. Moeinian and S. M. Mehdinia, “Removing methylene blue from aqueous solutions using rice husk silica adsorbent.” Pol. J. Environ. Stud., Vol 28, pp 2281–2287, 2019. https://doi.org/10.15244/pjoes/91044.

[13] C. Tsamo, G. K. Dourandi, and D. C. Dahaina, “Removal of Rhodamine B from aqueous solution using silica extracted from rice husk”. SN Appl. Sci., Vol 2:256, 2020. https://doi.org/10.1007/s42452-020-2057-0.

[14] O. S. Bello, I.A. Bello, and K. A. Adegoke, “Adsorption of Dyes Using Different Types of Sand: A Review”. S. Afr. J. Chem., Vol 66, pp 117-129, 2013.

[15] C. Tsamo, B. Issa, I. Samomssa and T. B. Fouogoung; “Removal of hexavalent chromium from aqueous solution using unmodified saw Dust: Batch and column Studies”. Curr. J.Appl. Sci. Technol., Vol 32(3), pp 1- 16, 2019. https://doi.org/10.9734/CJAST/2019/46153.

[16] C. Tsamo, P. Abba, D. Fotio, A.V. Tore, and F. S. Wassansa, “One-, two-, and three-parameter isotherms, kinetics, and thermodynamic evaluation of Co(II) removal from aqueous solution using dead neem leaves”. Int. J. Chem. Eng., pp 1-14, 2019. https://doi.org/10.1155/2019/6452672.

[17] M. Mupa, D. D.Rutsito, and C. Musekiwa, “Removal of methylene blue from aqueous solutions using biochar prepared from Eichhorrnia crassipes (Water Hyacinth)-molasses composite: Kinetic and equilibrium studies”. Afr. J. Pure Appl. Chem., Vol 10, pp 63-72, 2016. https://doi.org/10.5897/AJPAC2016.0703.

[18] Y. Zhang, C. Zhu, F. Liu, Y. Yuan, H. Wu, H. and A. Li, “Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review”, Sci. Total Environ., Vol 646, pp 265- 279, 2019. https://doi.org/10.1016/j.scitotenv.2018.07.279.

[19] C. Dong, C. Chen, W. Liu., C. Liu, Y. Liu, and H. Liu, “Synthesis of magnetic chitosan nanoparticle and its adsorption property for humic acid from aqueous solution”, Colloids Surf. A, Vol 446, pp 179-189, 2014. https://doi.org/10.1016/j.colsurfa.2014.01.069.

[20] W. Yang, Y. Lu, F. Zheng, X. Xue, N. Li, D. and Liu, “Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube”, Chem. Eng. J., Vol 179, pp 112–118, 2012.

[21] N. Agudelo, J. P. Hinestroza and J. Husserl, “Removal of sodium and chloride ions from aqueous solutions using fique fibers (Furcraea spp.)”, Water Sci. Technol., Vol 73(5), pp 1197–1201. https://doi.org/10. 2166/wst.2015.593.

[22] A. M. Hisham, “Adsorption isotherm of NaCl from aqueous solutions onto activated carbon cloth to enhance membrane filtration”, J. Appl. Sci. Eng., Vol 23(1), pp. 69-78, 2020. https://doi.org/10.6180/jase.202003_23(1).0009.

[23] C. Tsamo, P. N. Djomou Djonga, J. M. Dangwang Dikdim, J.M. and R. Kamga, “Kinetic and equilibrium studies of Cr(VI), Cu(II) and Pb(II) removal from aqueous solution using red mud, a low cost adsorbent”, Arabian J. Sci. Eng., Vol 43, pp 2353–2368, 2018. https://doi.org/10.1007/s13369-017-2787-5.

[24] A. Nimibofa, A. N. Ebelegi, and D. Wankasi, “Modelling and interpretation of adsorption isotherms”, J. Chem., Vol 11, pp 3039817, 2017. https://doi.org/10.1155/2017/3039817.

Refbacks

  • There are currently no refbacks.