Sintesis dan Analisis Struktur Prekursor NMC811 dari Mix Hydroxide Precipitate (MHP) dengan Presipitan Asam Oksalat

Miftakhul Hakam, Adhitya Dharmawan, Meidiana Arinawati, Agus Purwanto, Cornelius Satria Yudha

Abstract

ABSTRAK. Studi mengenai struktur kristal suatu material sangat penting dalam mengetahui baik tidaknya material, terutama untuk aplikasi teknologi penyimpanan energi listrik seperti baterai ion litium. Semakin murni dan baik suatu struktur kristal material, maka semakin baik efisiensinya dalam menjadi bahan baku material katoda baterai. Tujuan dari penelitian ini adalah sintesis dan analisis karakteristik struktur kristal prekursor NMC811 oksalat (Ni0,8Mn0,1Co0,1C2O4) dari senyawa Mixed hydroxide precipitate atau MHP dengan presipitan asam oksalat. Sintesis prekursor NMC811 dilakukan dengan mereaksikan MHP (Ni 51,43% wt) dengan asam asetat agar diperoleh larutan nikel asetat. Sejumlah garam kobalt dan mangan ditambahkan kedalam larutan sehingga komposisi nikel:kobalt:mangan senilai 8:1:1. Endapan prekursor diperoleh dengan penambahan presipitan larutan asam oksalat. Endapan prekursor yang berhasil diisolasi dianalisis dengan X-ray diffractometer (XRD) untuk evaluasi struktur kristalnya. Berdasarkan analisis XRD MHP memiliki puncak difraksi yang kurang tajam dengan lebar pita yang relative besar sehingga menandakan bahwa MHP memiliki sifat kristal yang buruk. Sementara itu, Prekursor NMC811 oksalat memiliki puncak difraksi yang tajam. Hal ini membuktikan prekursor memiliki sifat kristal yang baik dengan kemurnian yang tinggi. Oleh karena itu, Prekursor NMC811 oksalat dengan bahan baku MHP dapat digunakan untuk bahan baku material katoda baterai ion litium tipe NMC811.

 

ABSTRACT. The study of the crystal structure of a material is very important in knowing whether or not the material is good, especially for the application of electrical energy storage technology such as lithium ion batteries. The purer and better the crystal structure of a material, the better its efficiency in becoming a battery cathode raw material. The purpose of this study was to synthesize and analyze the characteristics of the crystal structure of the precursor NMC811 oxalate (Ni0,8Mn0,1Co0,1C2O4) from Mixed hydroxide precipitate or MHP with oxalic acid as a precipitate. NMC811 precursor was synthesized by reacting MHP (Ni 51.43% wt) with acetic acid to obtain a nickel acetate solution. A number of cobalt and manganese salts are added to the solution so that the nickel:cobalt:manganese composition is 8:1:1. The precursor precipitate was obtained by adding oxalic acid solution as a precipitate. The isolated precursor precipitate was analyzed by X-ray diffractometer (XRD) to evaluate its crystal structure. Based on XRD analysis, MHP has a diffraction peak that is less sharp with a relatively large bandwidth, indicating that MHP has poor crystalline properties. Meanwhile, NMC811 oxalate precursor has a sharp diffraction peak. This proves the precursor has good crystalline properties with high purity. Therefore, the NMC811 oxalate precursor with MHP raw material can be used as the cathode material for the lithium ion battery type NMC811.

Full Text:

PDF

References

1] Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature [Internet].2001;414(6861):359–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11713543 [

2] Zeng T, Zhang C. An effective way of co-precipitating Ni2+, Mn2+ and Co2+ by using ammonium oxalate as precipitant for Ni-rich Li-ion batteries cathode. J Mater Sci [Internet]. 2020;55(25):11535–44. Available from: https://doi.org/10.1007/s10853-020-04753-w

[3] Purwanto A, Yudha CS, Ubaidillah U, Widiyandari H, Ogi T. NCA cathode material : synthesis methods and performance enhancement efforts NCA cathode material : synthesis methods and performance enhancement efforts. Mater Res Express [Internet]. 2018;5(12):122001. Available from: http://dx.doi.org/10.1088/2053-1591/aae167

[4] Yudha CS, Hasanah LM, Muzayanha SU, Widiyandari H, Purwanto A. Synthesis and Characterization of Material LiNi0.8Co0.15Al0.05O2 Using One-Step Co-Precipitation Method for Li-Ion Batteries. JKPK (Jurnal Kim dan Pendidik Kim. 2019;4(3):134.

[5] Muzayanha SU, Yudha CS, Hasanah LM, Nur A, Purwanto A. Effect of Heating on the Pretreatment Process for Recycling Li-Ion Battery Cathode. JKPK (Jurnal Kim dan Pendidik Kim. 2019;4(2):105.

[6] Li L, Fan E, Guan Y, Zhang X, Xue Q, Wei L, et al. Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. 2017;

[7] Nurcahyani C, Anjani AE, Purwanto A, Yudha CS, Hasanah LM, Dyartanti ER, et al. Flame-assisted spray pyrolysis of lithium nickel cobalt aluminum oxide leaching stream Flame-Assisted Spray Pyrolysis of Lithium Nickel Cobalt Aluminum Oxide Leaching Stream. In 2020.

[8] Oh HJ, Jo CH, Yoon CS, Yashiro H, Kim SJ, Passerini S, et al. Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries. NPG Asia Mater. 2016;8(5).

[9] Du M, Li Q, Pang H. Oxalate-derived porous prismatic nickel/nickel oxide nanocomposites toward lithium-ion battery. J Colloid Interface Sci. 2020;580:614–22.

[10] Oh HJ, Jo CH, Yoon CS, Yashiro H, Kim SJ, Passerini S, et al. Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries. NPG Asia Mater [Internet]. 2016;8(5):e270-8. Available from: http://dx.doi.org/10.1038/am.2016.59

[11] Zhu J, Vo T, Li D, Lu R, Kinsinger NM, Xiong L, et al. Crystal Growth of Li[Ni1/3Co1/3Mn1/3]O2 as a Cathode Material for High-Performance Lithium Ion Batteries. Cryst Growth Des. 2012;12:1118–23.

[12] Yudha CS, Muzayanha SU, Rahmawati M, Widiyandari H, Sutopo W, Nizam M, et al. Fast production of high performance LiNi0.815Co0.15Al0.035O2 cathode material via urea-assisted flame spray pyrolysis. Energies. 2020;13(11).

Refbacks

  • There are currently no refbacks.