Analisis Morfologi Prekursor NMC811 dari Mix Hydroxide Precipitate (MHP) dengan Presipitan Asam Oksalat

Adhitya Dharmawan, Miftakhul Hakam, Meidiana Arinawati, Cornelius Satria Yudha, Agus Purwanto

Abstract

ABSTRAK. Morfologi material merupakan salah satu aspek yang berpengaruh pada kualitas material katoda baterai Li-ion atau LIBs, salah satunya material katoda LiNi0,8Mn0,1Co0,1O2 atau NMC811. Semakin baik distribusi ukuran dan butiran partikel, maka semakin baik pula kualitas dari produk akhir NMC811. Penelitian ini bertujuan untuk sintesis dan analisis prekursor NMC811 (Ni0,8Mn0,1Co0,1C2O4) dengan mixed hydroxide precipitate atau MHP sebagai sumber Ni. Pada penelitian ini, prekursor NMC811 oksalat diperoleh dengan melarutkan MHP, CoSO4 dan MnSO4 pada larutan asam asetat. Larutan yang terbentuk dipresipitasi dengan asam oksalat sehingga membentuk endapan prekursor NMC811 oksalat. Instrumen pengujian SEM-EDX digunakan dalam mengevaluasi karakteristik morfologi sampel. Studi komparasi morfologi prekursor NMC811 dengan MHP juga dilakukan. prekursor Berdasarkan analisis komposisional menggunakan EDX, komposisi atom C, O, Mn, Co dan Ni secara berturut-turut 15,21±0.55%; 57,64±1.37%; 4,47±0.59%; 4,20±0.74%; dan18,48±1.71%. Sementara itu, analisis menggunakan SEM menunjukkan bahwa prekursor NMC811 memiliki bentuk dan ukuran partikel yang cenderung seragam dan lebih kompak dibandingkan MHP yang memiliki bentuk dan ukuran yang lebih bervariasi. Sintesis awal NMC811 dengan presipitan asam oksalat dapat meningkatkan keseragaman morfologi yang baik, sehingga nantinya dapat dihasilkan produk akhir NMC811 yang baik pula.

 

 

ABSTRACT. Material morphology is one aspect that affects the quality of the cathode material for Li-ion batteries or LIBs, one of which is LiNi0,8Mn0,1Co0,1O2 or NMC811 cathode materials. The better the particle size and grain distribution, the better the quality of the final NMC811 product. This study aimed to synthesize and analyze the precursor of NMC811 (Ni0,8Mn0,1Co0,1C2O4) with mixed hydroxide precipitate or MHP as the source of Ni. In this study, NMC811 oxalate precursor was obtained by dissolving MHP, CoSO4 and MnSO4 in acetic acid or lactic acid solution. The solution formed was precipitated with oxalic acid to form a precursor precipitate of NMC811 oxalate. The SEM-EDX test instrument was used to evaluate the morphological characteristics of the samples. A comparative study of the morphology of the NMC811 precursor with MHP was also carried out. precursors Based on the compositional analysis using EDX, the atomic compositions of C, O, Mn, Co and Ni were 15.21±0.55%, respectively; 57.64±1.37%; 4.47±0.59%; 4.20±0.74%; and 18.48±1.71%. Meanwhile, analysis using SEM showed that the NMC811 precursor had a particle shape and size that tended to be uniform and more compact than MHP which had a more varied shape and size. The initial synthesis of NMC811 with oxalic acid precipitant can improve the good morphological uniformity, so that later, a good final product of NMC811 can be produced.

Full Text:

PDF

References

[1] Tarascon JM. Key challenges in future Li-battery research. Philos Trans R Soc A Math Phys Eng Sci. 2010;368(1923):3227–41.

[2] Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: Present and future. Mater Today [Internet]. 2015;18(5):252–64. Available from: http://dx.doi.org/10.1016/j.mattod.2014.10.040

[3] Xia S, Zhang Y, Dong P, Zhang Y. Synthesis cathode material LiNi0.8Co0.15Al0.05O2 with two step solid-state method under air stream. Eur Phys Journal-Applied Phys. 2014;65(1):1–6.

[4] Qiu Z, Zhang Y, Wang D, Xia S. A ternary oxide precursor with trigonal structure for synthesis. Solid State Electrochem. 2017

[5] Meng K, Wang Z, Guo H, Li X, Wang J. A compact process to prepare LiNi0.8Co0.1Mn0.1O2 cathode material from nickel-copper sulfide ore. Hydrometallurgy. 2017;174(May):1–9.

[6] Purwanto A, Yudha CS, Ubaidillah U, Widiyandari H, Ogi T, Haerudin H. NCA cathode material: Synthesis methods and performance enhancement efforts. Mater Res Express. 2018;5(12).

[7] Małecka B, Małecki A, Drozdz-Cieśla E, Tortet L, Llewellyn P, Rouquerol F. Some aspects of thermal decomposition of NiC2O4·2H2O. Thermochim Acta. 2007;466(1–2):57–62.

[8] Qiu Z, Zhang Y, Dong P, Xia S, Yao Y. A facile method for synthesis of LiNi0.8Co0.15Al0.05O2 cathode material. Solid State Ionics. 2017;307(December 2016):73–8.

[9] Nurcahyani C, Anjani AE, Purwanto A, Yudha CS, Hasanah LM, Dyartanti ER, et al. Flame-assisted spray pyrolysis of lithium nickel cobalt aluminum oxide leaching stream. AIP Conf Proc. 2020;2219(May).

[10] Hatchard TD, Dahn JR, Soc JE, A-a P, Hatchard TD, Dahn JR. In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon service In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon. 2004;151(6).

[11] Li J, Shunmugasundaram R, Doig R, Dahn JR. In Situ X-ray Diffraction Study of Layered Li-Ni-Mn-Co Oxides: Effect of Particle Size and Structural Stability of Core-Shell Materials. Chem Mater. 2016;28(1):162–71.

[12] Zhu J, Zheng J, Cao G, Li Y, Zhou Y, Deng S, et al. Flux-free synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 boosts its electrochemical performance in lithium batteries. J Power Sources. 2020;464(April):228207.

Refbacks

  • There are currently no refbacks.