Accreditation:
Indexed by:
ISSN:
Tools
[1] H. Of, S.O.F. Indonesia, “Handbook of energy & economic statistics of Indonesia 2019,” (2019).
[2] I. Qistina, D. Sukandar, T. Trilaksono, “Kajian Kualitas Briket Biomassa dari Sekam Padi dan Tempurung Kelapa,” J. Kim. Val. 2 136–142 (2016). https://doi.org/10.15408/jkv.v2i2.4054.
[3] D. Esposito, M. Antonietti, “Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes,” ChemSusChem. (2013). https://doi.org/10.1002/cssc.201300092.
[4] S.S. Toor, L. Rosendahl, A. Rudolf, “Hydrothermal liquefaction of biomass: A review of subcritical water technologies,” Energy. (2011). https://doi.org/10.1016/j.energy.2011.03.013.
[5] X. Yan, F. Jin, K. Tohji, A. Kishita, H. Enomoto, “Hydrothermal conversion of carbohydrate biomass to lactic acid,” AIChE J. (2010). https://doi.org/10.1002/aic.12193.
[6] Y. Qiu, A. Aierzhati, J. Cheng, H. Guo, W. Yang, Y. Zhang, “Biocrude Oil Production through the Maillard Reaction between Leucine and Glucose during Hydrothermal Liquefaction,” Energy and Fuels. (2019). https://doi.org/10.1021/acs.energyfuels.9b01875.
[7] R.F. Beims, Y. Hu, H. Shui, C. (Charles) Xu, “Hydrothermal liquefaction of biomass to fuels and value-added chemicals: Products applications and challenges to develop large-scale operations,” Biomass and Bioenergy. (2020). https://doi.org/10.1016/j.biombioe.2020.105510.
[8] A. Mathanker, D. Pudasainee, A. Kumar, R. Gupta, “Hydrothermal liquefaction of lignocellulosic biomass feedstock to produce biofuels: Parametric study and products characterization,” Fuel. (2020). https://doi.org/10.1016/j.fuel.2020.117534.
[9] M. Bicker, S. Endres, L. Ott, H. Vogel, “Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production,” J. Mol. Catal. A Chem. (2005). https://doi.org/10.1016/j.molcata.2005.06.017.
[10] H. Mao, Y. Yang, H. Zhang, J. Zhang, Y. Huang, “A critical review of the possible effects of physical and chemical properties of subcritical water on the performance of water-based drilling fluids designed for ultra-high temperature and ultra-high pressure drilling applications,” J. Pet. Sci. Eng. (2020). https://doi.org/10.1016/j.petrol.2019.106795.
[11] J. Akhtar, N.A.S. Amin, “A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass,” Renew. Sustain. Energy Rev. (2011). https://doi.org/10.1016/j.rser.2010.11.054.
[12] S. Zhang, F. Jin, J. Hu, Z. Huo, “Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions,” Bioresour. Technol. (2011). https://doi.org/10.1016/j.biortech.2010.09.049.
[13] C. Sánchez, I. Egüés, A. García, R. Llano-Ponte, J. Labidi, “Lactic acid production by alkaline hydrothermal treatment of corn cobs,” Chem. Eng. J. (2012). https://doi.org/10.1016/j.cej.2011.12.033.
[14] H. Yin, H. Yin, A. Wang, L. Shen, Y. Liu, Y. Zheng, “Catalytic conversion of glycerol to lactic acid over metallic copper nanoparticles and reaction kinetics,” J. Nanosci. Nanotechnol. (2017). https://doi.org/10.1166/jnn.2017.12573.
[15] B.S.T. Sembodo, D.A. Setyawardhani, A.D. Briliant, K.M. Putri, Kinetics of hydrothermal decomposition of glucose in ethanol-water solution, in: AIP Conf. Proc., 2020. https://doi.org/10.1063/5.0000724.
[16] C. Promdej, Y. Matsumura, “Temperature effect on hydrothermal decomposition of glucose in sub- and supercritical water,” Ind. Eng. Chem. Res. (2011). https://doi.org/10.1021/ie200298c.
[17] J. Wang, H. Cui, J. Wang, Z. Li, M. Wang, W. Yi, “Kinetic insight into glucose conversion to 5-hydroxymethyl furfural and levulinic acid in LiCl⋅3H2O without additional catalyst,” Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.128922.
[18] F. Anjana, W. R. Oktaviani, A. Roesyadi, "Studi kinetika dekomposisi glukosa pada temperatur tinggi". Jurnal Teknik ITS. (2014). https://doi.org/10.12962/j23373539.v3i2.6426.