Biosorption of Chromium from Textile Wastewater Using Mimosa pudica Tannin Gel

Yanuar Bekti Ramadhan, Aida Nur Sabrina, Endang Kwartiningsih

Abstract

Abstract. The heavy metal content is very dangerous because it can pollute the environment. One of the heavy metals waste commonly found in the textile industry is chromium (Cr). Mimosa pudica is a weed plant and its availability is very abundant. However, it also contains tannin which can be developed into tannin gel biosorbent to adsorption heavy metal content in the wastewater. The purpose of this research is to study Mimosa pudica tannin as a Cr biosorbent from textile wastewater. There are two steps to synthesis tannin gel biosorbent. They are the tannin extraction and the condensation polymerization process. Tannin is easily soluble in water so the condensation polymerization process is needed to make it insoluble in water. The extraction of Mimosa pudica tannin was done using water solvent. The condensation polymerization process was done by the reaction of tannin extract and formaldehyde. The Cr content of textile industry wastewater in the Pasar Kliwon, Surakarta was 4 ppm. The results of the biosorption of Cr heavy metal using Mimosa pudica tannin gel showed that the remaining Cr heavy metal was 0.7098 ppm. It was already below the threshold which was 1 ppm.

 

Keywords: biosorption, condensation polymerization, extraction, Mimosa pudica, tannin gel

Full Text:

View PDF

References

[1] Komarawidjaja, W. (2017). Paparan Limbah Cair Industri Mengandung Logam Berat pada Lahan Sawah di Desa Jelegong, Kecamatan Rancaekek, Kabupaten Bandung. Jurnal Teknologi Lingkungan, 18(2), 173. https://doi.org/10.29122/jtl.v18i2.2047

[2] Budiati, S. R., Dewi, N. K., Pribadi, T. A. (2014). Akumulasi Kandungan Logam Berat Chromium (Cr) pada Ikan Betok (Anabas testudienus) yang Terpapar Limbah Cair Tekstil di Sungai Langsur Sukoharjo. Unnes Journal of Life Science. 3(1), 18–23.

[3] Sumantri, A., & Rahmani, R. Z. (2020). Analisis Pencemaran Kromium (VI) berdasarkan Kadar Chemical Oxygen Demand (COD) pada Hulu Sungai Citarum di Kecamatan Majalaya Kabupaten Bandung Provinsi Jawa Barat 2018. Jurnal Kesehatan Lingkungan Indonesia, 19(2), 144–151. https://doi.org/10.14710/jkli.19.2.144-151

[4] Sanyal, T., Kaviraj, A., & Saha, S. (2015). Deposition of chromium in the aquatic ecosystem from effluents of handloom textile industries in Ranaghat-Fulia region of West Bengal, India. Journal of Advanced Research, 6(6), 995–1002. https://doi.org/10.1016/j.jare.2014.12.002

[5] Nahar, K., Chowdhury, M. A. K., Chowdhury, M. A. H., Rahman, A., & Mohiuddin, K. M. (2018). Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts. Environmental Science and Pollution Research, 25(8), 7954–7967. https://doi.org/10.1007/s11356-017-1166-9

[6] Ahmaruzzaman, M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science, 166(1–2), 36–59. https://doi.org/10.1016/j.cis.2011.04.005

[7] Wen, X., Du, C., Zeng, G., Huang, D., Zhang, J., Yin, L., Tan, S., Huang, L., Chen, H., Yu, G., Hu, X., Lai, C., Xu, P., & Wan, J. (2018). A novel biosorbent prepared by immobilized Bacillus licheniformis for lead removal from wastewater. Chemosphere, 200, 173–179. https://doi.org/10.1016/j.chemosphere.2018.02.078

[8] Al-Homaidan, A. A., Al-Qahtani, H. S., Al-Ghanayem, A. A., Ameen, F., & Ibraheem, I. B. M. (2018). Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi Journal of Biological Sciences, 25(8), 1733–1738. https://doi.org/10.1016/j.sjbs.2018.07.011

[9] Beni, A. A., & Esmaeili, A. (2020). Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review. In Environmental Technology and Innovation (Vol. 17). Elsevier B.V. https://doi.org/10.1016/j.eti.2019.100503

[10] İnce, M., & Kaplan İnce, O. (2017). An Overview of Adsorption Technique for Heavy Metal Removal from Water/Wastewater: A Critical Review. International Journal of Pure and Applied Sciences, 3(2), 10–19. https://doi.org/10.29132/ijpas.372335

[11] Ghomi, A. G., Asasian-Kolur, N., Sharifian, S., & Golnaraghi, A. (2020). Biosorption for sustainable recovery of precious metals from wastewater. Journal of Environmental Chemical Engineering, 8(4). https://doi.org/10.1016/j.jece.2020.103996

[12] Azis, T., Ahmad, L. O., Rosa, F. E., & Kadir, L. A. (2019). Study of Equilibrium and Kinetics of Pb(II) in Solution Using Persimmon Tannin Gel as an Adsorbent. Jurnal Kimia Sains Dan Aplikasi, 22(6), 310–316. https://doi.org/10.14710/jksa.22.6.310-316

[13] Nurkaromah, A., & Sukandar. (2017). Modifikasi Tanin dari Biomassa Daun Akasia (Acacia mangium Wild ) Dengan Cara Polimerisasi Sebagai Biosorben Untuk Logam Pb ( II). Journal of Environtment Engineering and Waste Management2(2), 79–91.

[14] Nakajima, A., & Baba, Y. (2004). Mechanism of hexavalent chromium adsorption by persimmon tannin gel. Water Research, 38(12), 2859–2864. https://doi.org/10.1016/j.watres.2004.04.005

[15] Kartikaningsih, Bachroni, M. A. A., Danarto., Y. C. (2014). Pengambilan Tanin Dari Kulit Kayu Bakau Dan Pemanfaatannya Sebagai Adsorben Logam Berat Cuprum (Cu) Dan Timbal (Pb). Ekuilibium, 13(1), 23–27. https://doi.org/10.20961/ekuilibrium.v13i1.2150

[16] Mapala, K., & Pattabi, M. (2017). Mimosa pudica Flower Extract Mediated Green Synthesis of Gold Nanoparticles. Nano World Journal, 03(02), 44–50. https://doi.org/10.17756/nwj.2017-045

[17] Varnika, S., Ashish, S., & Imran, A. (2012). A review on Ethnomedical and Traditional Uses of Mimosa pudica (CHUI-MUI). International Journal Research of Pharmacy 3(2), 41–44.

[18] Mutiar, S., Kasim, A., Emriadi, E., & Asben, A. (2019). Studi awal tanin dari kulit kayu Acacia auriculiformis A. Cunn. ex Benth. dari hutan tanaman industri untuk bahan penyamak kulit. Majalah Kulit, Karet, Dan Plastik, 34(2), 41. https://doi.org/10.20543/mkkp.v34i2.3967

[19] Sánchez-Martín, J., Beltrán-Heredia, J., & Gibello-Pérez, P. (2011). Adsorbent biopolymers from tannin extracts for water treatment. Chemical Engineering Journal, 168(3), 1241–1247. https://doi.org/10.1016/j.cej.2011.02.022

[20] Paryanto., Suri, A. K., & Saputro, R. (2017). Difusi dan Transfer Massa pada Ekstraksi Tanin dari Buah Mangrove ( Rhizophora Stylosa ). Rekayasa Bahan Alam Dan Energi Berkelanjutan, 1(2), 42–48.

[21] Karina, Yuliati, I., & Sirait, S. M. (2016). Kadar tanin biji pinang ( areca catechu l) berdasarkan lama pemanasan dan ukuran serbuk. Jurnal Hutan Lestari, 4(1), 119–127.

[22] Marnoto, T., Haryono, G., Gustinah, D., & Putra, F. A. (2012). Ekstraksi Tannin Sebagai Bahan Pewarna Alami Dari Tanaman Putrimalu (Mimosa pudica) Menggunakan Pelarut Organik. Jurnal Reaktor, 14(1), 39–45. https://doi.org/10.14710/reaktor.14.1.39-45

[23] Dababi, I., Gimello, O., Elaloui, E., & Brosse, N. (2020). Water Extraction of Tannins from Aleppo Pine Bark and Sumac Root for the Production of Green Wood Adhesives. Molecules (Basel, Switzerland), 25(21). https://doi.org/10.3390/molecules25215041

[24] Pinto, P. C. R., Sousa, G., Crispim, F., Silvestre, A. J. D., & Neto, C. P. (2013). Eucalyptus globulus as Source of Tannin Extract for Application in Leather industry. 2–7.

Refbacks

  • There are currently no refbacks.