Accreditation:
Indexed by:
ISSN:
Tools
Abstract. Pre-treatment is an important tool for practical cellulose conversion processes and can be carried out in different ways such as mechanical pre-treatment, steam explosion, ammonia fiber explosion, supercritical CO2 treatment, alkali or acid pretreatment, ozone pre-treatment, physicochemical pretreatment, dilute-acid pretreatment and biological pre-treatment. Biomass pretreatment with hot water (HW) is the most investigated physicochemical method use the differences in the thermal stabilities of the major components of lignocellulosic materials. Acid pretreatment of lignocellulosic biomass aims at increasing the sugar substrate digestibility, defined as the concentration of reducing sugars after the hydrolysis, by microorganisms. Acid hydrolysis is an attractive pretreatment method as the hemicellulose degradation runs with the efficiency of approximately 20-90%, depending on the process conditions. Dilute acid (DA) processes with continued research and development, no significant breakthroughs have been made to raise the glucose yields much higher than 65-70%. Acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase compared with DA and HW pretreatment.
Keywords: ethanol, cellulosic, pre-treatment
[1] K. Wang, J. Chen, S.-N. Sun, R.-C. Sun, Steam explosion, in: Pretreat. Biomass, Elsevier, 2015: pp. 75–104.
[2] M. Balat, H. Balat, C. Öz, Progress in bioethanol processing, Prog. Energy Combust. Sci. 34 (2008) 551–573.
[3] X. Peng, S. Nie, X. Li, X. Huang, Q. Li, Characteristics of the water-and alkali-soluble hemicelluloses fractionated by sequential acidification and graded-ethanol from sweet maize stems, Molecules. 24 (2019) 212.
[4] X. Zhou, H. Zhang, Y. Xu, Biodegradation and Utilization of Hemicellulose, in: Funct. Carbohydrates, CRC Press, 2017: pp. 183–218.
[5] N. Jacquet, G. Maniet, C. Vanderghem, F. Delvigne, A. Richel, Application of steam explosion as pretreatment on lignocellulosic material: a review, Ind. Eng. Chem. Res. 54 (2015) 2593–2598.
[6] P. V Neves, A.P. Pitarelo, L.P. Ramos, Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content, acid catalysis and different fermentation technologies, Bioresour. Technol. 208 (2016) 184–194.
[7] H. Chen, X. Fu, Industrial technologies for bioethanol production from lignocellulosic biomass, Renew. Sustain. Energy Rev. 57 (2016) 468–478.
[8] D.B. Levin, C.R. Carere, N. Cicek, R. Sparling, Challenges for biohydrogen production via direct lignocellulose fermentation, Int. J. Hydrogen Energy. 34 (2009) 7390–7403.
[9] G. Kumar, P. Sivagurunathan, B. Sen, A. Mudhoo, G. Davila-Vazquez, G. Wang, S.-H. Kim, Research and development perspectives of lignocellulose-based biohydrogen production, Int. Biodeterior. Biodegradation. 119 (2017) 225–238.
[10] D. Styarini, Y. Aristiawan, F. Aulia, H. Abimanyu, Y. Sudiyani, Determination of organic impurities in lignocellulosic bioethanol product by GC-FID, Energy Procedia. 32 (2013) 153–159.
[11] L. Montague, A. Slayton, J. Lukas, Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover, Citeseer, 2002.
[12] M. Takagi, A method for production of alcohol directly from cellulose using cellulase and yeast, Chem. Microb. Protein. (1977).
[13] S. Mohapatra, C. Mishra, S.S. Behera, H. Thatoi, Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass–A review, Renew. Sustain. Energy Rev. 78 (2017) 1007–1032.
[14] X. Jia, X. Peng, Y. Liu, Y. Han, Conversion of cellulose and hemicellulose of biomass simultaneously to acetoin by thermophilic simultaneous saccharification and fermentation, Biotechnol. Biofuels. 10 (2017) 232.
[15] B. Hahn-Hägerdal, M. Galbe, M.-F. Gorwa-Grauslund, G. Lidén, G. Zacchi, Bio-ethanol–the fuel of tomorrow from the residues of today, Trends Biotechnol. 24 (2006) 549–556.
[16] E.M. Rubin, Genomics of cellulosic biofuels, Nature. 454 (2008) 841–845.
[17] P. Kumar, D.M. Barrett, M.J. Delwiche, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Ind. Eng. Chem. Res. 48 (2009) 3713–3729.
[18] S.H. Mood, A.H. Golfeshan, M. Tabatabaei, G.S. Jouzani, G.H. Najafi, M. Gholami, M. Ardjmand, Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment, Renew. Sustain. Energy Rev. 27 (2013) 77–93.
[19] J.D. McMillan, Pretreatment of lignocellulosic biomass, in: ACS Publications, 1994.
[20] S.S. Tan, D.Y. Li, Z.Q. Jiang, Y.P. Zhu, B. Shi, L.T. Li, Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C, Bioresour. Technol. 99 (2008) 200–204.
[21] X. Xiao, J. Bian, M.-F. Li, H. Xu, B. Xiao, R.-C. Sun, Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment, Bioresour. Technol. 159 (2014) 41–47.
[22] R. Kumar, F. Hu, P. Sannigrahi, S. Jung, A.J. Ragauskas, C.E. Wyman, Carbohydrate derived‐pseudo‐lignin can retard cellulose biological conversion, Biotechnol. Bioeng. 110 (2013) 737–753.
[23] Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol. 83 (2002) 1–11.
[24] Y.-S. Cheng, Y. Zheng, C.W. Yu, T.M. Dooley, B.M. Jenkins, J.S. VanderGheynst, Evaluation of high solids alkaline pretreatment of rice straw, Appl. Biochem. Biotechnol. 162 (2010) 1768–1784.
[25] A. Hendriks, G. Zeeman, Pretreatments to enhance the digestibility of lignocellulosic biomass, Bioresour. Technol. 100 (2009) 10–18.
[26] H. Jung, H.G. Yoon, W. Park, C. Choi, D.B. Wilson, D.H. Shin, Y.J. Kim, Effect of sodium hydroxide treatment of bacterial cellulose on cellulase activity, Cellulose. 15 (2008) 465.
[27] S. Zhou, L.O. Ingram, Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (celz and cely) fromerwinia chrysanthemi, J. Bacteriol. 182 (2000) 5676–5682.
[28] A.M.J. Kootstra, H.H. Beeftink, E.L. Scott, J.P.M. Sanders, Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw, Biochem. Eng. J. 46 (2009) 126–131.
[29] X. Meng, A.J. Ragauskas, Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates, Curr. Opin. Biotechnol. 27 (2014) 150–158.
[30] R.W. Torget, J.S. Kim, Y.Y. Lee, Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis, Ind. Eng. Chem. Res. 39 (2000) 2817–2825.
[31] J.F. Saeman, Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature, Ind. Eng. Chem. 37 (1945) 43–52.
[32] A.H. Conner, B.F. Wood, C.G. Hill Jr, J.F. Harris, Kinetic model for the dilute sulfuric acid saccharification of lignocellulose, J. Wood Chem. Technol. 5 (1985) 461–489.
[33] J. Bouchard, G. Garnier, P. Vidal, E. Chornet, R.P. Overend, Characterization of depolymerized cellulosic residues, Wood Sci. Technol. 24 (1990) 159–169.
[34] W.S. Mok, M.J. Antal Jr, G. Varhegyi, Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose, Ind. Eng. Chem. Res. 31 (1992) 94–100.
[35] A. Demirbaş, Ethanol from cellulosic biomass resources, Int. J. Green Energy. 1 (2004) 79–87.
[36] S.D. Mansfield, C. Mooney, J.N. Saddler, Substrate and enzyme characteristics that limit cellulose hydrolysis, Biotechnol. Prog. 15 (1999) 804–816.
[37] P. Alvira, E. Tomás-Pejó, M. Ballesteros, M.J. Negro, Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review, Bioresour. Technol. 101 (2010) 4851–4861.
[38] M.A. Mandegari, S. Farzad, J.F. Görgens, Process design, flowsheeting, and simulation of bioethanol production from lignocelluloses, Biofuels Prod. Futur. Perspect. (2016) 255.
[39] D. Kim, Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review, Molecules. 23 (2018) 309.
[40] Z. Lin, H. Huang, H. Zhang, L. Zhang, L. Yan, J. Chen, Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis, Appl. Biochem. Biotechnol. 162 (2010) 1872–1880.
[41] A. Nutt, Hydrolytic and oxidative mechanisms involved in cellulose degradation, (2006).
[42] Y.E. Sun, Enzymatic hydrolysis of rye straw and Bermudagrass for ethanol production, (2002).
[43] Y.-H.P. Zhang, M.E. Himmel, J.R. Mielenz, Outlook for cellulase improvement: screening and selection strategies, Biotechnol. Adv. 24 (2006) 452–481.
[44] O.O. Oyekola, The enzymology of sludge solubilisation under biosulphidogenic conditions: Isolation, characterisation and partial purification of endoglucanases, (2003).
[45] A. V Gusakov, T.N. Salanovich, A.I. Antonov, B.B. Ustinov, O.N. Okunev, R. Burlingame, M. Emalfarb, M. Baez, A.P. Sinitsyn, Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose, Biotechnol. Bioeng. 97 (2007) 1028–1038.
[46] B.B. Hallac, A.J. Ragauskas, Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol, Biofuels, Bioprod. Biorefining. 5 (2011) 215–225.