Accreditation:
Indexed by:
ISSN:
Tools
Abstrak. Agricultural waste adalah limbah yang dihasilkan dari sektor pertanian, seperti limbah jerami, ampas tebu, dan pelepah sawit. Limbah pertanian tersebut mengandung lignoselulosa. Lignoselulosa adalah komponen yang terdiri atas selulosa, hemiselulosa, dan lignin. Adanya kandungan selulosa dapat dimanfaatkan menjadi berbagai produk, namun kandungan lignin dan hemiselulosa dapat menghambat proses hidrolisis lignoselulosa. Selulosa memiliki banyak kegunaan seperti bahan baku propelan atau bahan peledak, serta turunan dari alfa-selulosa dapat diproses menjadi produksi bioetanol, asam glutamat, biosolvent alkohol, dll. Metode hidrolisis lignoselulosa sangat mempengaruhi kadar fermentable sugar yang dihasilkan. Upaya penelitian telah dilakukan untuk meningkatkan hidrolisis lignoselulosa. Pretreatment bahan untuk menghilangkan lignin dan hemiselulosa serta optimasi enzim xilanase dan selulase secara signifikan meningkatkan kemampuan hidrolisis lignoselulosa. Sakarifikasi dan hidrolisis simultan efektif meningkatkan hasil dan laju hidrolisis lignoselulosa. Sehingga perlu pendekatan lebih lanjut untuk mengetahui efektifitas berbagai metode yang digunakan dalam melakukan optimasi pemecahan rantai lignoselulosa. Fokus pada review paper ini adalah metode yang dapat digunakan dalam hidrolisis lignoselulosa agricultural waste sebagai optimasi produksi fermentable sugar, diantaranya: metode pretreatment, delignifikasi, hidrolisis dan sakarifikasi. Selanjutnya dilakukan pengolahan lanjut dari fermentable sugar.
Abstract. Agricultural waste are produced from the agricultural sector, such as straw waste, bagasse, and palm fronds. Agricultural waste contains lignocellulose. Lignocellulose is a component consisting of cellulose, hemicellulose, and lignin. The content of cellulose can be used in various products, but the content of lignin and hemicellulose can inhibit the hydrolysis of lignocellulose. Cellulose has many uses such as propellant or explosive raw materials, and derivatives of alpha-cellulose can be processed into the production of bioethanol, glutamic acid, and biosolvent alcohol. The lignocellulose hydrolysis method greatly affects the levels of fermentable sugar produced. Research have been made to increase the hydrolysis of lignocellulose. In this paper, several methods can be used to increase the yield of fermentable sugar through the hydrolysis of lignocellulose, including pretreatment, delignification, hydrolysis, and saccharification methods. Pretreatment using 2% alkaline, thermal delignification, hydrolysis using xylanase and cellulase enzymes together can significantly increase the ability of lignocellulose hydrolysis to obtain optimal fermentable sugar yield. Simultaneous saccharification and hydrolysis are effective in increasing yield and product formation rate.
Keywords: Agricultural Waste, Lignocellulose, Cellulose, Pretreatment, Delignification, Saccharification, Hydrolysis, Xylanase, Cellulase, Fermentable Sugar
[1] B. C. Saha, “Lignocellulose Biodegradation and Application in Biotechnology,” US Gov. Work. Am. Chem. Soc., vol. 2, no. 14, 2004.
[2] E. Sjostrom, Kimia Kayu: Dasar–dasar dan Penggunaan, 2nd ed. Yogyakarta: Universitas Gadjah Mada.
[3] J. M. Perez, J., J. M. Dorado, T. Rubia, “Biodegradation and Biological treatments of Cellulose, Hemicellulose and Lignin: An Overview,” Int. Microbiol, vol. 5, pp. 53–63, 2002.
[4] et al Fan, “The Nature of Lignocellulosic and Their Pretreatment for Enzymatic Hydrolysis,” Adv. Bichem. Eng., vol. 23, pp. 158–187, 1982.
[5] Singhania, “Cellulolytic Enzymes. Biotechnology for Agro-Industrial Residues Utilization,” vol. 20, pp. 371–381, 2009.
[6] Dewi, “Hidrolisis Limbah Hasil Pertanian Secara Enzimatik,” Akta Agrar., vol. 5, no. 2, pp. 67–71, 2002.
[7] R. Pratiwi, D. Rahayu, and M. I. Barliana, “Pemanfaatan Selulosa dari Limbah Jerami Padi (Oryza sativa) Sebagai Bahan Bioplastik,” IJPST, vol. 3, no. 3, pp. 83–91, 2016.
[8] M. Samsuri et al., “Pemanfaatan Selulosa Bagas untuk Produksi Ethanol Melalui Sakarifikasi dan Fermentasi Serentak dengan Enzim Xylanase,” Makara Teknol., vol. 11, no. 1, pp. 17–24, 2007.
[9] A. Mandal and D. Chakrabarty, “Isolation of Nanocellulose from Waste Sugarcane Bagasse (SCB) and Its Characterization,” Carbohydr. Polym., vol. 86, pp. 1291–1299, 2011.
[10] Jufrinaldi, “Isolasi Selulosa dari Bagas Tebu Melalui Pemanasan Iradiasi Gelombang Mikro,” J. Ilm. Tek. Kim. UNPAM, vol. 2, no. 2, pp. 36–46, 2018.
[11] M. Tewari, P. C. Singh, V.K., Gope, and A. K. Chaudhary, “Evaluation of Mechanical Properties of Bagasse-Glass Fiber Reinforced Composite,” J. Mater. Environ. Sci., vol. 3, no. 1, pp. 187–194, 2012.
[12] Caesari, Padil, and Yelmida, “Pemurnian Selulosa Alfa Pelepah Sawit Menggunakan Enzim Xylanase,” 2012.
[13] A. Imsya and P. R, “Perubahan Kandungan Lignin, NDF, dan ADF Pelepah Sawit Melalui Proses Biodegumming sebagai Sumber Bahan Pakan Serat Ternak Ruminansia,” J.I. Ternak dan Vet., vol. 14, no. 4, pp. 284–288, 2009.
[14] K. W. Law, W. Daud, and W.R, “Oil Palm Fibers as Papermaking Material: Potentials and Challenges,” Bioresources, vol. 6, no. 1, pp. 901–917, 2011.
[15] N. A. M. Remli, U. K. M. Shah, R. Mohamad, and S. Abd-Aziz, “Effects of Chemical and Thermal Pretreatments on The Enzymatic Saccharification of Rice Straw for Sugars Production,” Bioresources, vol. 9, no. 1, pp. 510–522, 2013.
[16] A. Hartiati, I. W. Gede, and S. Yoga, “Pemanfaatan Umbi Minor Gadung sebagai Bahan Baku Produksi Gula Cair Menggunakan Proses Likuifikasi dan Sakarifikasi Secara Enzimatis,” in Seminar Agroindustri dan Lokakarya Nasional FKPT-TPI, 2015, pp. 147–154.
[17] N. M. Rilek, N. Hidayat, and Y. Sugiarto, “Hidrolisis Lignoselulosa Hasil Pretreatment Pelepah Sawit (Elaeis guineensis Jacq) menggunakan H2SO4 pada Produksi Bioetanol,” J. Teknol. dan Manaj. Agroindustri, vol. 6, no. 2, pp. 76–82, 2017.
[18] D. Seftian, F. Antonius, and M. Faizal, “Pembuatan Etanol dari Kulit Pisang Menggunakan Metode Hidrolisis Enzimatik dan Fermentasi,” J. Tek. Kim., vol. 18, no. 1, pp. 10–16, 2012.
[19] Hahn-Hagerdal, B. Galbe, G. M.F.M. Gorwa-Grauslund. Liden, and G. Zacchi, “Bio-ethanol-the Fuel of Tomorrow from the Residues of Today,” Sci. Direct, Elseveir, 2006.
[20] Hamelinck, V. Hooijdonk, and Faaij, “Ethanol from lignocellulosic biomass: Techno-economic performance inshort-, midle- and long-term,” Biomass and Bioenergy, vol. 28, pp. 384–410, 2005.
[21] K. Shimizu, K. Sudo, H. Ono, M. Ishihara, T. Fujii, and S. Hishiyama, “Integrated Process for Total Utilization of Wood Componen by Steam Explosion Pretreatment,” Biomass and Bioenergy, vol. 14, no. 3, pp. 195–203, 1998.
[22] H. H. Yoon, “Pretreatment of Lignocellulosic Biomass by Autohydrolysis and Aqueous Ammonia Percolation,” Korean J. Chem. Eng., vol. 15, no. 6, pp. 631–636, 1998.
[23] K. H. and J. H. Kim, “Supercritical CO2 Pretreatment of Lignocellulose Enhances Enzymatic Cellulose Hydrolysis,” Bioresour. Technol., vol. 77, no. 139–144, 2001.
[24] V. Balan, B. B, and S. P. . Chundawat, “Lignocellulose Biomass treatment Using AFEX,” Method Mol. Biol., vol. 581, pp. 61–77, 2009.
[25] Syafwina, W. E.D, H. Y, T. Watanabe, and M. Kuwahara, “Pretreatment of empty fruit bunch of oil palm by white-rot fungi for the utilization of its component,” Wood Res, pp. 351–356, 2002.
[26] Syafwina, H. Y, T. Watanabe, and M. Kuwahara, “Pretreatment of oil palm empty fruit bunch by white-rot fungi for enzymatic saccharification,” Wood Res, vol. 89, pp. 19–20, 2002.
[27] H. Itoh, M. Wada, Y. Honda, M. Kuwahara, and T. Watanabe, “Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi,” J. Biotechnol., vol. 103, pp. 273–280, 2003.
[28] Syafwina, T. Watanabe, Y. Honda, M. Kuwahara, and T. Watanabe, “Simultaneous Saccharification and Fermentation of Oil Palm Empty Fruit Bunch Pretreated by White Rot Fungi for Ethanol Production,” Wood Res, pp. 313–316, 2004.
[29] M. Samsuri, “Pemanfaatan Selulosa Bagas untuk Produksi Etanol Melalui Sakarifikasi Serentak dengan Enzim Xylanase.”
[30] T. Tanabe, Y. Baba, N. Shinohara, T. Mitani, Y. Honda, and T. Watanabe, “Pretreatments of Softwood by Microwave Irradiation and White Rot Fungi for Ethanol Production,” p. 379, 2004.
[31] S. Hatakeyama and M. Kuwahara, “Degradation of Discharged Stump and Root of Japanese Cedar by Wood Rotting Basidiomycetes,” p. 373, 2004.
[32] M. Samsuri et al., “Pretreatments for Ethanol Production from Bagasse by Simultaneous Saccharification and Fermentation,” pp. 288–294, 2005.
[33] E. Hermiati, D. Mangunwidjaja, T. C. Sunarti, and O. Suparno, “Pemanfaatan Biomassa Lignoselulosa Ampas tebu untuk Produksi Bioetanol,” J. Litbang Pertan., vol. 29, no. 4, pp. 121–130, 2010.
[34] Y. Sun and J. Cheng, “Hidrolysis of Lignocellulose Material for Ethanol Production: a Review,” Bioresour. Technol., vol. 83, pp. 1–11, 2002.
[35] L. Agustini, L., dan Efiyanti, “Pengaruh Perlakuan Delignifikasi Terhadap Hidrolisis Selulosa dan Produksi Etanol Dari Limbah Berlignoselulosa,” vol. 33, no. 1, pp. 69–88, 2015.
[36] W. Y. Zulfieni, “Hidrolisis Pelepah Sawit Untuk Memurnikan Selulosa-α.”
[37] Y. Kurniati, S. Budijanto, L. Nuraida, F. Nur, and A. Dewi, “Peningkatan Senyawa Fenolik Bekatul dengan SSF (Solid State Fermentation) sebagai Pencegah Kanker,” Iptek Tanam. Pangan, vol. 12, no. 2, pp. 97–104, 2017.
[38] T. M. Fenida, “Studi Reaksi Hidrolisis Glukosa untuk Menghasilkan Senyawa Asam Levulinat Menggunakan Katalis Homogen dan Katalis Heterogen Asam,” Universitas Indonesia, 2010.
[39] Y. Andayana, “Pembuatan Ethanol dari Jerami Padi dengan Proses Hidrolisis dan Fermentasi,” Jur. Tek. Kim. Fak. Teknol. Ind. UPN “Veteran” Jatim, vol. 8, no. 2, pp. 54–57, 2014.
[40] Sutikno, Marniza, and N. Sari, “Pengaruh Perlakuan Awal Basa dan Hidrolisis Asam terhadap Kadar Gula Reduksi Ampas Tebu,” J. Teknol. Ind. dan Has. Pertan., vol. 20, no. 2, pp. 65–72, 2015.
[41] H. Ferdiansyah, S. H. Sumarlan, and B. D. Argo, “Hidrolisis Enzimatik Menggunakan Enzim Selulase dari Trichoderma reseei dan Aspergillus niger pada Produksi Bioetanol Jerami Padi,” J. Keteknikan Pertan. Trop. dan Biosistim, vol. 3, no. 2, pp. 211–216, 2015.
[42] Ella Saparianti, T. Dewanti, and Siti Khusnul Dhoni, “Hidrolisis Ampas Tebu Menjadi Glukosa Cair Oleh Kapang Trichoderma viride,” J. Teknol. Pertan., vol. 5, no. 1, pp. 1–10, 1992.
[43] H. Sitompul, D. R. Putra, and P. N. F, “Pengaruh Waktu dan Konsentrasi Enzim Selulase pada Proses Hidrolisis Tandan Kosong Kelapa Sawit Menjadi Glukosa,” Anal. Anal. Environ. Chem., vol. 1, no. 01, pp. 8–16, 2016.
[44] M. Oktaviani, T. Fajriutami, and E. Hermiati, “Produksi Etanol dari Ampas Tebu Terdelignifikasi Alkali melalui Proses Sakarifikasi dan Fermentasi Serentak,” in Seniati, 2016, pp. 45–51.
[45] Kristina, E. R. Sari, and Novia, “Alkaline Pretreatment dan Proses Simultan Sakarifikasi-Fermentasi untuk Produksi Etanol dari Tandan Kosong Kelapa Sawit,” J. Tek. Kim., vol. 18, no. 3, pp. 34–43, 2012.
[46] P. Gutierrez-macias, M. De Lourdes, H. De Jesus, and B. E. Barragan-huerta, “The Production of Biomaterials from Agro-industrial Waste,” Fresenius Environ. Bullet, vol. 26, no. 6, pp. 4128–4152, 2017.