Effect of Temperature in Deep Eutectic Solvent on Chemical Composition and Structure of Lignocellulose from Corncob

Yusi Prasetyaningsih

Abstract

Agricultural waste biomass has significant potential and can be processed into high-value materials. Corncobs are a biomass source with high cellulose content. Processing lignocellulosic biomass is challenging due to the complex molecular structure of the bonds. Deep Eutectic Solvents (DES) are used to break the lignin bonds of corncob lignocellulose. The delignification process using ChCl-urea at temperatures of 80 °C, 95 °C, and 110 °C for 6 hours was carried out to determine the chemical composition of corncobs before and after pretreatment. The highest cellulose content of 59.85% was obtained at 110 °C. The kinetic energy of molecules increases with higher temperatures, leading to more effective collisions. The cellulose content increases due to the breaking of ether bonds in lignin and glycosidic bonds in polysaccharides, as shown in the FTIR spectra. XRD analysis shows that the crystallinity of corncobs increases after DES pretreatment. In short, this study provides a simple and green method to prepare cellulose and an efficient utilization route of corncob.

Full Text:

PDF

References

Y. Xiao, J. Qi, Z. Yu, W. Zhao, W. Shao, N. Li, Y. Kong, L. Li, W. Wei, “Pretreatment of corncob powder by choline chloride-urea-ethanolamine to co-produce glucose, xylose and lignin nanospheres,” Ind Crops Prod. 206 (2023). https://doi.org/10.1016/j.indcrop.2023.117695.

Y. Zhao, U. Shakeel, M. Saif Ur Rehman, H. Li, X. Xu, J. Xu, “Lignin-carbohydrate complexes (LCCs) and its role in biorefinery,” J Clean Prod. 253 (2020). https://doi.org/10.1016/j.jclepro.2020.120076.

I. El-Hallag, S. Elsharkawy, S. Hammad, “Electrodeposition of Ni nanoparticles from deep eutectic solvent and aqueous solution as electrocatalyst for methanol oxidation in acidic media,” Int J Hydrogen Energy. 46 15442–15453 (2021). https://doi.org/10.1016/j.ijhydene.2021.02.049.

Y. Chen, T. Mu, “Revisiting greenness of ionic liquids and deep eutectic solvents,” Green Chemical Engineering. 2 174–186 (2021). https://doi.org/10.1016/j.gce.2021.01.004.

S. Taweekayujan, S. Somngam, T. Pinnarat, “Optimization and kinetics modeling of phenolics extraction from coffee silverskin in deep eutectic solvent using ultrasound-assisted extraction,” Heliyon. 9 (2023). https://doi.org/10.1016/j.heliyon.2023.e17942.

S. Hong, Y. Yuan, C. Liu, W. Chen, L. Chen, H. Lian, H. Liimatainen, “A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors,” J Mater Chem C Mater. 8 550–560 (2020). https://doi.org/10.1039/c9tc05913j.

M. Zdanowicz, K. Wilpiszewska, T. Spychaj, “Deep eutectic solvents for polysaccharides processing. A review,” Carbohydr Polym. 200 361–380 (2018). https://doi.org/10.1016/j.carbpol.2018.07.078.

C. Alvarez-Vasco, R. Ma, M. Quintero, M. Guo, S. Geleynse, K.K. Ramasamy, M. Wolcott, X. Zhang, “Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization,” Green Chemistry. 18 5133–5141 (2016). https://doi.org/10.1039/c6gc01007e.

X. Zhou, F. Li, C. Li, Y. Li, D. Jiang, T. Zhang, C. Lu, Q. Zhang, Y. Jing, “Effect of deep eutectic solvent pretreatment on biohydrogen production from corncob: pretreatment temperature and duration,” Bioengineered. 14 2252218 (2023). https://doi.org/10.1080/21655979.2023.2252218.

R. Ling, W. Wu, Y. Yuan, W. Wei, Y. Jin, “Investigation of choline chloride-formic acid pretreatment and Tween 80 to enhance sugarcane bagasse enzymatic hydrolysis,” Bioresour Technol. 326 (2021). https://doi.org/10.1016/j.biortech.2021.124748.

Y.T. Tan, G.C. Ngoh, A.S.M. Chua, “Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch,” Ind Crops Prod. 123 271–277 (2018). https://doi.org/10.1016/j.indcrop.2018.06.091.

Y. Prasetyaningsih, Y. Kusumastuti, T. Ariyanto, M. Hidayat, “Optimization of cellulose yield from oil palm trunks with deep eutectic solvents using response surface methodology,” Green Processing and Synthesis. 14 (2025). https://doi.org/10.1515/gps-2024-0252.

P. Li, C. Yang, Z. Jiang, Y. Jin, W. Wu, “Lignocellulose pretreatment by deep eutectic solvents and related technologies : A review,” Journal of Bioresources and Bioproducts. (2022). https://doi.org/10.1016/j.jobab.2022.11.004.

M. Wang, X. Fu, Y. Chang, J. Wei, H. Cui, “Recent advancements in Deep Eutectic Solvent (DES) pretreatment: Applications, mechanisms, and integration with emerging technologies for biorefinery,” Ind Crops Prod. 229 (2025). https://doi.org/10.1016/j.indcrop.2025.121028.

F. Baraka, X. Erdocia, I. Velazco-Cabral, F. Hernández-Ramos, I. Dávila-Rodríguez, M. Maugin, J. Labidi, “Impact of deep eutectic solvent pre-treatment on the extraction of cellulose nanofibers,” Cellulose. 31 9645–9660 (2024). https://doi.org/10.1007/s10570-024-06185-0.

Z. Yao, G. Chong, H. Guo, “Deep Eutectic Solvent Pretreatment and Green Separation of Lignocellulose,” Applied Sciences (Switzerland). 14 (2024). https://doi.org/10.3390/app14177662.

C. Li, C. Huang, Y. Zhao, C. Zheng, H. Su, L. Zhang, W. Luo, H. Zhao, S. Wang, L.J. Huang, “Effect of choline-based deep eutectic solvent pretreatment on the structure of cellulose and lignin in Bagasse,” Processes. 9 1–14 (2021). https://doi.org/10.3390/pr9020384.

I. Costa-Trigo, M.G. Morán-Aguilar, N. Pérez Guerra, R. Pinheiro de Souza Oliveira, J.M. Domínguez, “Enhancing the Biorefinery of Chestnut Burrs, Part II: Influence of Pretreatment with Choline Chloride–Urea-Diluted Deep Eutectic Solvent on Enzymatic Hydrolysis,” Processes. 13 4090 (2025). https://doi.org/10.3390/pr13124090.

S.D. Shinde, X. Meng, R. Kumar, A.J. Ragauskas, Recent advances in understanding the pseudo-lignin formation in lignocellulosic 1 biorefinery, 2017. http://energy.gov/downloads/doe-public-access-plan.

A. Toleugazykyzy, K. Bekbayev, B. Bolkenov, D. Alwazeer, B. Rskeldiyev, K. Kuterbekov, K. Bekmyrza, A. Kabyshev, M. Kubenova, S. Opakhai, “Comprehensive Review of Recent Trends in the Use of Deep Eutectic Solvents for the Valorization of Secondary Lignocellulosic Biomass,” Sustainability (Switzerland). 17 (2025). https://doi.org/10.3390/su17219492.

I. Costa-Trigo, A. Paz, M.G. Morán-Aguilar, N. Pérez Guerra, R. Pinheiro de Souza Oliveira, J.M. Domínguez, “Enhancing the biorefinery of chestnut burrs. Part I. Study of the pretreatment with choline chloride urea diluted deep eutectic solvent,” Biomass Bioenergy. 173 (2023). https://doi.org/10.1016/j.biombioe.2023.106786.

M. Pan, G. Zhao, C. Ding, B. Wu, Z. Lian, H. Lian, “Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea,” Carbohydr Polym. 176 307–314 (2017). https://doi.org/10.1016/j.carbpol.2017.08.088.

Refbacks

  • There are currently no refbacks.