Pengaruh Penambahan Limbah Serbuk Kaca dan Limbah Serbuk Keramik Terhadap Kuat Tekan dan Daya Serap Air Paving Block

Tsaqifudien Adani, Dewi Handayani, Willy Anastasya Ilonka

Abstract

Berkembangnya populasi di Indonesia juga berpengaruh pada perkembangan sarana transportasi. Perkembangan sarana transportasi memerlukan infrastruktur yang memadai. Paving block merupakan salah satu tipe infrastruktur jalan yang sering digunakan. Hal tersebut berpengaruh terhadap jumlah produksi paving block yang ikut meningkat. Bahan alam merupakan bahan pembuatan paving block yang di eksplorasi secara terus menerus. Saat bersamaan penggunaan material yang dieksplorasi menghasilkan limbah yang di buang dalam jumlah besar. Limbah serbuk kaca dan limbah serbuk keramik berpotensi sebagai subtitusi agregat halus pembuatan paving block. Penelitian ini bertujuan mengetahui kuat tekan dan daya serap optimum yang didapatkan paving block variasi limbah serbuk kaca sebesar 2,5%, 5%, 7,5%, 10%, 12,5% dan limbah serbuk keramik sebesar 30%. Menggunakan metode eksperimen di dapatkan hasil kuat tekan tertinggi 12,5% limbah kaca dan 30% limbah keramik yaitu sebesar 11,17 MPa dan daya serap terendah 12,5% limbah kaca dan 30% limbah keramik yaitu sebesar 6,67%.

Keywords

Limbah serbuk kaca; Limbah serbuk keramik; Paving block; Kuat tekan; Daya serap

Full Text:

PDF

References

Adaway, M., & Wang, Y. J. E. J. O. S. E. (2015). Recycled glass as a partial replacement for fine aggregate in structural concrete–Effects on compressive strength. Electronic Journal of Structural Engineering, 14(1), 116-122.

Aliabdo, A. A., Abd Elmoaty, M., & Auda, E. M. (2014). Re-use of waste marble dust in the production of cement and concrete. Construction and building materials, 50, 28-41.

ANFACER (National Association of Ceramic Tile and Congeners Manufacturers of Brazil), 2014. Brazilian Ceramic Sector Forecasts 6% Growth in 2013. https://www.anfacer.org.br/site?idConteudo=2369 (accessed 28.02.23). [in Portuguese].

Cheng, Y., Huang, F., Li, G. L., Xu, L., & Hou, J. (2014). Test research on effects of ceramic polishing powder on carbonation and sulphate-corrosion resistance of concrete. Construction and building materials, 55, 440-446.

Gabaldón-Estevan, D., Criado, E., & Monfort, E. (2014). The green factor in European manufacturing: a case study of the Spanish ceramic tile industry. Journal of Cleaner Production, 70, 242-250.

Gagg, C. R. (2014). Cement and concrete as an engineering material: An historic appraisal and case study analysis. Engineering Failure Analysis, 40, 114-140.

Halicka, A., Ogrodnik, P., & Zegardlo, B. (2013). Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials, 48, 295-305.

Huang, Y., Luo, J., & Xia, B. (2013). Application of cleaner production as an important sustainable strategy in the ceramic tile plant–a case study in Guangzhou, China. Journal of Cleaner Production, 43, 113-121.

Ibáñez-Forés, V., Bovea, M. D., & Azapagic, A. (2013). Assessing the sustainability of Best Available Techniques (BAT): methodology and application in the ceramic tiles industry. Journal of Cleaner Production, 51, 162-176.

Indonesia, B. S. N. (1996). Bata beton (Paving block). Badan Standardisasi Nasional, Bandung.

Jacoby, P. C., & Pelisser, F. (2015). Pozzolanic effect of porcelain polishing residue in Portland cement. Journal of Cleaner Production, 100, 84-88.

Jamshidi, A., Kurumisawa, K., Nawa, T., & Igarashi, T. (2016). Performance of pavements incorporating waste glass: The current state of the art. Renewable and Sustainable Energy Reviews, 64, 211-236.

Johnston, C. D. (1974). Waste glass as coarse aggregate for concrete. Journal of Testing and Evaluation, 2(5), 344-350.

Karade, S. R. (2010). Cement-bonded composites from lignocellulosic wastes. Construction and building materials, 24(8), 1323-1330.

Lee, G., Poon, C. S., Wong, Y. L., & Ling, T. C. (2013). Effects of recycled fine glass aggregates on the properties of dry–mixed concrete blocks. Construction and building materials, 38, 638-643.

Lu, J. X., Zheng, H., Yang, S., He, P., & Poon, C. S. (2019). Co-utilization of waste glass cullet and glass powder in precast concrete products. Construction and Building Materials, 223, 210-220.

Medina, C., De Rojas, M. S., & Frías, M. (2012). Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cement and concrete composites, 34(1), 48-54.

Mirzahosseini, M., & Riding, K. A. (2015). Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM). Cement and Concrete Composites, 56, 95-105.

Mo, K. H., Alengaram, U. J., Jumaat, M. Z., Yap, S. P., & Lee, S. C. (2016). Green concrete partially comprised of farming waste residues: a review. Journal of Cleaner Production, 117, 122-138.

Mudjanarko, S. W., Limantara, A. D., Mayestino, M., Sutrisno, A. E. A., Ibrahim, M. H. W., & Wiwoho, F. P. (2020, July). The Utilization of Bamboo Innovation as Aggregate Substitute for Paving Block. In Journal of Physics: Conference Series (Vol. 1573, No. 1, p. 012014). IOP Publishing.

Pacheco-Torgal, F., & Jalali, S. (2010). Reusing ceramic wastes in concrete. Construction and building materials, 24(5), 832-838.

Park, S. B. (2000). Development of recycling and treatment technologies for construction wastes. Ministry of Construction and Transportation, Seoul, Tech. Rep.

Patil, A. R., & Sathe, S. B. (2021). Feasibility of sustainable construction materials for concrete paving blocks: A review on waste foundry sand and other materials. Materials Today: Proceedings, 43, 1552-1561.

Senthamarai, R. M., Manoharan, P. D., & Gobinath, D. (2011). Concrete made from ceramic industry waste: Durability properties. Construction and Building Materials, 25(5), 2413-2419.

Shayan, A., & Xu, A. (2004). Value-added utilisation of waste glass in concrete. Cement and concrete research, 34(1), 81-89.

Shelby, J. E. (2020). Introduction to glass science and technology. Royal society of chemistry.

Shi, C., & Zheng, K. (2007). A review on the use of waste glasses in the production of cement and concrete. Resources, conservation and recycling, 52(2), 234-247.

Tuncan, M., Karasu, B., & Yalcin, M. (2001, June). The suitability for using glass and fly ash in Portland cement concrete. In ISOPE International Ocean and Polar Engineering Conference (pp. ISOPE-I). ISOPE.

Van Oss, H. G. (2007). Mineral commodity summaries. US Geological Survey: Reston, VA, USA, 200.

Wattanasiriwech, D., Saiton, A., & Wattanasiriwech, S. (2009). Paving blocks from ceramic tile production waste. Journal of Cleaner Production, 17(18), 1663-1668.

Xuan, D., Poon, C. S., & Zheng, W. (2018). Management and sustainable utilization of processing wastes from ready-mixed concrete plants in construction: A review. Resources, Conservation and Recycling, 136, 238-247.

Refbacks

  • There are currently no refbacks.