Efficacy of Low-Toxicity Alternatives for Citrus Disease Management: Potassium Sorbate and Sodium Benzoate against Alternaria alternata

Lamyaa Zelmat, Meriem Hamrani, Oussama Fariss, Zineb Abbad, Mohamed Dahman, Abdelali Samdi, Mohammed Ibriz, Mohammed El Guilli

Abstract

The integration of generally recognized as safe (GRAS) salts as low-toxicity solutions represents a crucial eco-friendly alternative to fungicides, harnessing their potent antimicrobial effects against various crop pathogens. In this study, the effectiveness of potassium sorbate, sodium benzoate, sodium bicarbonate, and sodium tetraborate was investigated against Alternaria alternata, a significant pathogen causing diseases worldwide in citrus. The inhibitory effects of various salt concentrations on this pathogen were evaluated in vitro using modified potato dextrose agar (PDA) and in vivo through artificial inoculation of ‘Maroc Late’ orange fruits, under both curative and preventive treatments. Initial screening of different active ingredients against three A. alternata isolates established imazalil as a commercial reference for comparative analysis. Results showed that potassium sorbate and sodium benzoate were the most potent inhibitors, suppressing the fungus in vitro by 71% and 67% at 2,000 ppm, respectively, revealing a very low value of IC50 (3 ppm). These two salts yielded comparable outcomes to imazalil (100% suppression) in the curative treatment, achieving significant reductions in severity of 80% and 100% at a low concentration of 2% (w/v). Additionally, fruits treated preventively with 4% (w/v) potassium sorbate and sodium benzoate reduced disease symptoms by up to 100%. The current study highlights GRAS salts that are similarly effective to imazalil and could serve as alternatives to conventional fungicides registered for managing Alternaria diseases of citrus.

Keywords

Alternaria diseases; alternatives; citrus fruit; fungicides; GRAS salts

Full Text:

PDF

References

Aiello, D., Guarnaccia, V., Azzaro, A., & Polizzi, G. (2020). Alternaria brown spot on new clones of sweet orange and lemon in Italy. Phytopathologia Mediterranea, 59(1), 131–145. https://doi.org/10.36253/phyto-10769

Arora, D., & Upadhyay, R. (1978). Effect of fungal staling growth substances on colony interaction. Plant and Soil, 49, 685–690. https://doi.org/10.1007/BF02183297

Awaad, S. S., Sherief, M. A., Mousa, S. M., Orabi, A., & Abdel-Salam, A. B. (2023). A comparative study on the antifungal effect of potassium sorbate, chitosan, and nano-chitosan against Rhodotorula mucilaginosa and Candida albicans in skim milk acid-coagulated (Karish) cheese. Veterinary World, 16(9), 1991. https://doi.org/10.14202/vetworld.2023.1991-2001

Balai, L. P., Singh, R., Sinha, A., & Yadav, S. (2020). Evaluation of different fungicides and antagonists in vitro and in vivo condition against Alternaria blight of pigeonpea. Legume Research-An International Journal, 43(2), 268–275. http://dx.doi.org/10.18805/LR-3962

Bastianel, M., Martinelli, R., Devite, F. T., Cristofani-Yaly, M., Ferreira, R. do V., Stuchi, E. S., & Azevedo, F. A. de. (2023). Reaction of mandarins to the Alternaria brown spot and huanglongbing : Identification of potential varieties for these diseases to be managed in the field. Horticulturae, 9(6), 641. https://doi.org/10.3390/horticulturae9060641

Belabess, Z., Benyazid, J., & El Guilli, M. (2020). Principales causes des écarts de triage des clémentines dans la région de Berkane. African and Mediterranean Agricultural Journal-Al Awamia, 129, 177–194. https://doi.org/10.34874/IMIST.PRSM/afrimed-i129.31409

Besil, N., Pérez-Parada, A., Cesio, V., Varela, P., Rivas, F., & Heinzen, H. (2016). Degradation of imazalil, orthophenylphenol and pyrimethanil in clementine mandarins under conventional post-harvest industrial conditions at 4 °C. Food Chemistry, 194, 1132–1137. https://doi.org/10.1016/j.foodchem.2015.08.111

Camiletti, B. X., Lichtemberg, P. S. F., Luo, Y., Gabri, V. M., & Michailides, T. J. (2024). Evaluation of pre-harvest fungicide treatments against Alternaria rot in California mandarins and occurrence of mutations associated with fungicide resistance. Crop Protection, 186, 106910. https://doi.org/10.1016/j.cropro.2024.106910

Camiletti, B. X., Lichtemberg, P. S. F., Paredes, J. A., Carraro, T. A., Velascos, J., & Michailides, T. J. (2022). Characterization, pathogenicity, and fungicide sensitivity of Alternaria isolates associated with preharvest fruit drop in California citrus. Fungal Biology, 126(4), 277–289. https://doi.org/10.1016/j.funbio.2022.02.003

Chen, Y., Barzee, T. J., Zhang, R., & Pan, Z. (2019). Chapter 9—Citrus. Integrated Processing Technologies for Food and Agricultural By-Products (pp. 217–242). Academic Press. https://doi.org/10.1016/B978-0-12-814138-0.00009-5

Coronado-Partida, L., Patrón-Soberano, A., Rodríguez-González, V., & Gutiérrez-Martínez, P. (2023). Antifungal potential of eco-friendly chitosan-sodium benzoate to inhibit the development of Rhizopus stolonifer isolated from jackfruit. Journal of Plant Diseases and Protection, 130(4), 905–913. https://doi.org/10.1007/s41348-023-00746-4

Devite, F. T., Azevedo, F. A. de, Bastianel, M., Schinor, E. H., & Conceição, P. M. da. (2023). Mandarin essential oils as an alternative method of controlling the fungus Alternaria alternata (Fr. : Fr.) Keissler. Horticulturae, 9(6), 613. https://doi.org/10.3390/horticulturae9060613

Erasmus, A., Lennox, C. L., Jordaan, H., Smilanick, J. L., Lesar, K., & Fourie, P. H. (2011). Imazalil residue loading and green mould control in citrus packhouses. Post-harvest Biology and Technology, 62(2), 193–203. https://doi.org/10.1016/j.postharvbio.2011.05.006

Escrivá, L., Oueslati, S., Font, G., & Manyes, L. (2017). Alternaria mycotoxins in food and feed : An overview. Journal of Food Quality, 2017(1), 1569748. https://doi.org/10.1155/2017/1569748

European Commission. (2011). Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Official Journal of the European Union, L295, 1–177. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011R1129

Fagundes, C., Pérez-Gago, M. B., Monteiro, A. R., & Palou, L. (2013). Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. International journal of food microbiology, 166(3), 391–398. https://doi.org/10.1016/j.ijfoodmicro.2013.08.001

Ferreira, F. V., Herrmann‐Andrade, A. M., Calabrese, C. D., Bello, F., Vázquez, D., & Musumeci, M. A. (2020). Effectiveness of Trichoderma strains isolated from the rhizosphere of citrus tree to control Alternaria alternata, Colletotrichum gloeosporioides and Penicillium digitatum A21 resistant to pyrimethanil in post‐harvest oranges (Citrus sinensis L.(Osbeck)). Journal of Applied microbiology, 129(3), 712–727. https://doi.org/10.1111/jam.14657

Garganese, F., Schena, L., Siciliano, I., Prigigallo, M. I., Spadaro, D., De Grassi, A., ..., & Sanzani, S. M. (2016). Characterization of citrus-associated Alternaria species in Mediterranean areas. PloS One, 11(9), e0163255. https://doi.org/10.1371/journal.pone.0163255

Guimarães, J. E., de la Fuente, B., Pérez-Gago, M. B., Andradas, C., Carbó, R., Mattiuz, B.-H., & Palou, L. (2019). Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain post-harvest quality of citrus fruit. International Journal of Food Microbiology, 301, 9–18. https://doi.org/10.1016/j.ijfoodmicro.2019.04.008

Güney, İ. G., Tekin, F., Günen, T. U., Özer, G., & Derviş, S. (2023). Alternaria alternata causing inner black rot of lemon (citrus limo) fruits in Turkey: Genetic diversity and characterisation. Physiological and Molecular Plant Pathology, 125, 101998. https://doi.org/10.1016/j.pmpp.2023.101998

Gürgen, A., & Yıldız, S. (2024). Antifungal and antioxidant properties of some artificial antioxidants, generally recognized as safe compounds and nano-oxides. Turkish Journal of Agriculture-Food Science and Technology, 12(8), 1402–1407. https://doi.org/10.24925/turjaf.v12i8.1402-1407.6828

Kara, M., Soylu, S., Gümüş, Y., Soylu, E. M., Uysal, A., & Kurt, Ş. (2023). Determination of the antifungal effect of boron, sodium and potassium salts against pomegranate fruit and crown rot disease agent Coniella granati. International Journal of Innovative Approaches in Agricultural Research, 7(4), 469–476. https://doi.org/10.29329/ijiaar.2023.630.8

Lyousfi, N., Legrifi, I., Ennahli, N., Blenzar, A., Amiri, S., Laasli, S.-E., …, & Lahlali, R. (2023). Evaluating food additives based on organic and inorganic salts as antifungal agents against Monilinia fructigena and maintaining post-harvest quality of apple fruit. Journal of Fungi, 9(7), 762. https://doi.org/10.3390/jof9070762

Maghsoodi, F., & Taheri, P. (2021). Efficacy of Althaea officinalis leaf extract in controlling Alternaria spp. pathogenic on citrus. European Journal of Plant Pathology, 161(4), 799–813. https://doi.org/10.1007/s10658-021-02361-1

Maroc Citrus. (2023). The Moroccan citrus association. Retrieved from https://maroccitrus.com/statistiques-2/

Martínez-Blay, V., Pérez-Gago, M. B., de la Fuente, B., Carbó, R., & Palou, L. (2020). Edible coatings formulated with antifungal GRAS salts to control citrus anthracnose caused by Colletotrichum gloeosporioides and preserve post-harvest fruit quality. Coatings, 10(8), 730. https://doi.org/10.3390/coatings10080730

Masunaka, A., Ohtani, K., Peever, T., Timmer, L., Tsuge, T., Yamamoto, M., ..., & Akimitsu, K. (2005). An isolate of Alternaria alternata that is pathogenic to both tangerines and rough lemon and produces two host-selective toxins, ACT-and ACR-toxins. Phytopathology, 95(3), 241–247. https://doi.org/10.1094/PHYTO-95-0241

Montesinos-Herrero, C., Moscoso-Ramírez, P. A., & Palou, L. (2016). Evaluation of sodium benzoate and other food additives for the control of citrus post-harvest green and blue molds. Post-harvest Biology and Technology, 115, 72–80. https://doi.org/10.1016/j.postharvbio.2015.12.022

ONSSA. (2024). https://eservice.onssa.gov.ma/IndPesticide.aspx

Palou, L. (2018). Post-harvest treatments with GRAS salts to control fresh fruit decay. Horticulturae, 4(4), 46. https://doi.org/10.3390/horticulturae4040046

Palou, L., Ali, A., Fallik, E., & Romanazzi, G. (2016). GRAS, plant-and animal-derived compounds as alternatives to conventional fungicides for the control of post-harvest diseases of fresh horticultural produce. Post-harvest Biology and Technology, 122, 41–52. https://doi.org/10.1016/j.postharvbio.2016.04.017

Palou, L., & Smilanick, J. L. (2019). Post-harvest pathology of fresh horticultural produce. CRC Press. https://doi.org/10.1201/9781315209180

Romli, N. F. A., Sukor, R., Rukayadi, Y., & Mohsin, A. Z. (2023). The efficacy of sodium benzoate and potassium sorbate in inhibiting the growth of food fungi and bacteria. Songklanakarin Journal of Science & Technology, 45(1), 138–145. Retrieved from https://sjst.psu.ac.th/journal/45-1/18.pdf

Saito, S., & Xiao, C. L. (2017). Prevalence of post-harvest diseases of mandarin fruit in California. Plant Health Progress, 18(4), 204–210. https://doi.org/10.1094/PHP-08-17-0048-RS

Savage, C., Erasmus, A., du Plooy, W., Lennox, C., & Fourie, P. H. (2025). Influence of pH and temperature in a heated flooder application on imazalil residue loading, citrus green mould infection and sporulation inhibition. Post-harvest Biology and Technology, 219, 113227. https://doi.org/10.1016/j.postharvbio.2024.113227

Shehata, A., Mohammed, A., Mosa, A., & Ali, M. (2018). Evaluation of some fungicides and biocontrol agents for controlling of Alternaria rot on citrus fruits. Arab Universities Journal of Agricultural Sciences, 26(2), 691–699. https://doi.org/10.21608/ajs.2018.16001

Soto-Muñoz, L., Taberner, V., de la Fuente, B., Jerbi, N., & Palou, L. (2020). Curative activity of post-harvest GRAS salt treatments to control citrus sour rot caused by Geotrichum citri-aurantii. International Journal of Food Microbiology, 335, 108860. https://doi.org/10.1016/j.ijfoodmicro.2020.108860

Taycir, G. A., Walid, Y., Safa, R., Wissem, A. W., Majdi, H., Salma, L., & Bouzid, N. (2023). Characterization of Alternaria alternata isolates from different citrus species grown in Tunisian Cap Bon peninsula. Journal of Phytopathology, 171(11–12), 673–687. https://doi.org/10.1111/jph.13227

Timmer, L. W., Peever, T. L., Solel, Z., & Akimitsu, K. (2003). Alternaria diseases of citrus–Novel pathosystems. Phytopathologia Mediterranea, 42(2), 99–112. Retrieved from https://www.torrossa.com/en/resources/an/2210985

USDA. (2023). Citrus Annual. Retrieved from https://fas.usda.gov/data/morocco-citrus-annual-8

Vitale, A., Aiello, D., Azzaro, A., Guarnaccia, V., & Polizzi, G. (2021). An eleven-year survey on field disease susceptibility of citrus accessions to Colletotrichum and Alternaria species. Agriculture, 11(6), 536. https://doi.org/10.3390/agriculture11060536

Walczak-Nowicka, Ł. J., & Herbet, M. (2022). Sodium benzoate—Harmfulness and potential use in therapies for disorders related to the nervous system : A review. Nutrients, 14(7), 1497. https://doi.org/10.3390/nu14071497

Wang, F., Saito, S., & Xiao, C. L. (2023). Fungicide resistance of Alternaria alternata and A. arborescens isolates from mandarin fruit and its influence on control of post-harvest Alternaria rot. Plant Disease, 107(5), 1538–1543. https://doi.org/10.1094/PDIS-09-22-2157-RE

Wisniewski, M., Droby, S., Norelli, J., Liu, J., & Schena, L. (2016). Alternative management technologies for post-harvest disease control : The journey from simplicity to complexity. Post-harvest Biology and Technology, 122, 3–10. https://doi.org/10.1016/j.postharvbio.2016.05.012

Zelmat, L., Aouzal, S., Ben El Jilali, S., Mentag, R., Ibriz, M., & El Guilli, M. (2022). Field and in vitro evaluation of mandarin cultivars resistance to Alternaria alternata. International Journal of Agriculture & Biology, 27, 295‒300. https://doi.org/10.17957/IJAB/15.1929

Zelmat, L., Mansi, J. M., Aouzal, S., Gaboun, F., Khayi, S., Ibriz, M., ..., & Mentag, R. (2021). Genetic diversity and population structure of Moroccan isolates belong to Alternaria spp. causing black rot and brown spot in citrus. International Journal of Genomics, 2021(1), 9976969. https://doi.org/10.1155/2021/9976969

Zhao, J., Wang, Y., Liu, Q., Liu, S., Pan, H., Cheng, Y., & Long, C. (2023). The GRAS salts of Na2SiO3 and EDTA-Na2 control citrus post-harvest pathogens by disrupting the cell membrane. Foods, 12(12), 2368. https://doi.org/10.3390/foods12122368

Zhao, J., Wang, Y., Xu, K., He, J., & Yi, J. (2025). GRAS salts in post-harvest fruit preservation : Disease control, freshness retention, and application mode. Pesticide Biochemistry and Physiology, 211, 106386. https://doi.org/10.1016/j.pestbp.2025.106386

Refbacks

  • There are currently no refbacks.