Blood and Hormone Profile of Kacang Goats with a Palisada perforata (Bory) K.W.Nam Supplemented Diet

Nur Hidayah, Cuk Tri Noviandi, Andriyani Astuti, Pradita Iustitia Sitaresmi, Kustantinah Kustantinah

Abstract

Blood and hormone profile analysis can reliably determine the health status of an animal. This study aimed to test the inclusion of two levels of one red seaweed species, Palisada perforata (Bory) K.W.Nam (PP), at 2.50 to 5.00% organic matter (OM) in a basal diet (total mixed ration/TMR) on the blood (metabolite and hematology) and hormone (glucagon and ghrelin) profiles of Kacang goats. The study employed a randomized complete block design with three treatments and four replicates, involving 12 female Kacang goats with live weights of 23.84±5.26 and 26.96±4.10 kg. The result revealed that for the blood metabolites, supplementation of PP at 2.50% and 5.00% OM (2.97% and 5.94% dry matter, respectively) on the TMR as a basal diet increased (p < 0.05) the glucose and iron concentration, tended to increase (p < 0.1) the total protein, decreased (p < 0.05) the ureum and blood urea nitrogen concentration, and did not affect the cholesterol concentration in the blood of Kacang goats. TMR supplemented with PP at 5.00% OM had the lowest counts (p < 0.01) of white blood cells, lymphocytes, monocytes, and neutrophils. This treatment also increased (p < 0.01) the red blood cells and tended to increase (p < 0.10) the hemoglobin and hematocrit but did not affect the mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration of the blood. The plasma glucagon and ghrelin levels decreased (p < 0.01) at 5.00% OM supplementation with this seaweed. Therefore, supplementing a basal diet with PP at 5.00% OM is the optimum treatment to increase the health status of Kacang goats because it exhibits ideal blood and hormone profiles.

Keywords

feed additive; heath status; native goats; seaweed

Full Text:

PDF

References

Angulo, C., Chavez-Infante, L., Reyes-Becerril, M., Angulo, M., Romero-Geraldo, R., Llinas-Cervantes, X., & Cepeda-Palacios, R. (2020). Immunostimulatory and antioxidant effects of supplemental feeding with macroalga Sargassum spp. on goat kids. Tropical Animal Health and Production, 52(4), 2023–2033. https://doi.org/10.1007/s11250-020-02218-5

Barbato, O., De Felice, E., Todini, L., Menchetti, L., Malfatti, A., & Scocco, P. (2021). Effects of feed supplementation on nesfatin-1, insulin, glucagon, leptin, T3, cortisol, and BCS in milking ewes grazing on semi-natural pastures. Animals, 11(3), 682. https://doi.org/10.3390/ani11030682

Beyleto, V. Y., Solihati, N., Heriyadi, D., & Rahmat, D. (2022). Physiological adaptability of pregnant doe Kacang goats in a dry-land-area of Indonesia. Journal of Animal Behaviour and Biometeorology, 10(3), e2223. https://doi.org/10.31893/jabb.22023

Bharati, A. C., Prasad, B., P., Mallick, S., Masram, D. S, Kumar, A., & Saxena, G. K. (2023). Animal and plant hormone. Handbook of Biomolecules: Fundamentals, Properties and Applications, pp. 151–175. Amsterdam, Netherlands: Elsevier Academic Press. https://doi.org/10.1016/B978-0-323-91684-4.00028-1

Crilly, J. P., & Plate, P. (2022). Anaemia in lambs and kids reared indoors on maternal milk and the impact of iron supplementation on haemoglobin levels and growth rates. Animals, 12(14), 1863. https://doi.org/10.3390/ani12141863

Depison, D., Putra, W. P. B., Gushairiyanto, G., Alwi, Y., & Suryani, H. (2020). Morphometric characterization of Kacang goats raised in lowland and highland areas of Jambi Province, Indonesia. Journal of Advanced Veterinary and Animal Research, 7(4), 734–743. http://doi.org/10.5455/javar.2020.g475

D'Occhio, M. J., Baruselli, P. S., & Campanile, G. (2019). Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology, 125, 277–284. https://doi.org/10.1016/j.theriogenology.2018.11.010

Erniati, E., Zakaria, F. R., Prangdimurti, E., & Adawiyah, D. R. (2016). Potensi rumput laut: Kajian komponen bioaktif dan pemanfaatannya sebagai pangan fungsional. Acta Aquatica: Aquatic Sciences Journal, 3(1), 12–17. https://doi.org/10.29103/aa.v3i1.332

Fonseca, N. V. B., Cardoso, A. d. S., Bahia, A. S. R. d. S., Messana, J. D., Vicente, E. F., & Reis, R. A. (2023). Additive tannins in ruminant nutrition: An alternative to achieve sustainability in animal production. Sustainability, 15(5), 4162. https://doi.org/10.3390/su15054162

Hammadi, M., Fehem, A., Harrabi, H., Ayeb, N., Khorchani, T., & Salama, A. A. K. (2012). Shading effects on respiratory rate and rectal temperature in Tunisian local goat kids during summer season. 62nd Annual Meeting of European Association for Animal Production, 201. Retrieved from https://docs.eaap.org/2011/S42_Hammadi.pdf

Hidayah, N., Noviandi, C. T., Astuti, A., & Kustantinah. (2024). Chemical composition with different drying methods and ruminant methane gas production of Palisada perforata. Nusantara Bioscience, 16(1), 37–42. https://doi.org/10.13057/nusbiosci/n160105

Hidayah, N., Noviandi C. T., Astuti, A., & Kustantinah. (2025). Effect of Palisada perforate (Bory) K.W.Nam dietary supplementation on goat nutrient digestibility, nitrogen balance, and fermentation characteristics. International Journal of Veterinary Science, 14(3), 571–577. https://doi.org/10.47278/journal.ijvs/2024.274

Hong, Z. S., Kim, E. J., Jin, Y. C., Lee, J. S., Choi, Y. J., & Lee, H. G. (2015). Effects of supplementing brown seaweed by-products in the diet of holstein cows during transition on ruminal fermentation, growth performance and endocrine responses. Asian-Australasian journal of animal sciences, 28(9), 1296. http://dx.doi.org/10.5713/ajas.15.0235

Kaneko, J. J., Harvey, J. W., & Bruss M. L. (2008). Clinical biochemistry of domestic animals. 6th ed. Amsterdam, Netherland: Elsevier Academic Press. Retrieved from https://books.google.co.jp/books?id=spsD4WQbL0QC&pg=PA1&source=gbs_toc_r&cad=2#v=onepage&q&f=false

Kannan, G., Saker, K. E., Terrill, T. H., Kouakou, B., Galipalli, S., & Gelaye, S. (2007). Effect of seaweed extract supplementation in goats exposed to simulated preslaughter stress. Small Ruminant Research, 73(1–3), 221–227. https://doi.org/10.1016/j.smallrumres.2007.02.006

Khalil, K., Bachtiar, A., & Evitayani, E. (2019). Reproductive performance of female Kacang goats supplemented by mineral under a tethering feeding system. Tropical Animal Science Journal, 42(3), 215–223. https://doi.org/10.5398/tasj.2019.42.3.215

Larsen, M., & Kristensen, N. (2009). Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows. Journal of Dairy Science, 92(7), 3306–3318. https://doi.org/10.3168/jds.2008-1889

Little, A. G., & Seebacher, F. (2024). Endocrine responses to environmental variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 379, 20220515. https://doi.org/10.1098/rstb.2022.0515

Liu, Z. W., & Sun, X. (2020). A critical review of the abilities, determinants, and possible molecular mechanisms of seaweed polysaccharides antioxidants. International Journal of Molecular Sciences, 21(20), 7774. https://doi.org/10.3390/ijms21207774

Maxiselly, Y., Chiarawipa, R., Somnuk, K., Hamchara, P., Cherdthong, A., Suntara, C., ... & Chanjula, P. (2022). Digestibility, blood parameters, rumen fermentation, hematology, and nitrogen balance of goats after receiving supplemental coffee cherry pulp as a source of phytochemical nutrients. Veterinary Sciences, 9(10), 532. https://doi.org/10.3390/vetsci9100532

Michalak, I., Tiwari, R., Dhawan, M., Alagawany, M., Farag, M. R., Sharun, K., ... & Dhama, K. (2022). Antioxidant effects of seaweeds and their active compounds on animal health and production–A review. Veterinary Quarterly, 42(1), 48–67. https://doi.org/10.1080/01652176.2022.2061744

Mohammed, S. A., Razzaque, M. A., Omar, A. E., Albert, S., & Al-Gallaf, W. M. (2016). Biochemical and haematological profile of different breeds of goat maintained under intensive production system. African Journal of Biotechnology, 15(24), 1253–1257. https://doi.org/10.5897/AJB2016.15362

Mohri, M., Sarrafzadeh, F., Seifi, H. A., & Farzaneh, N. (2004). Effects of oral iron supplementation on some haematological parameters and iron biochemistry in neonatal dairy calves. Comparative Clinical Pathology, 13, 39–42. https://doi.org/10.1007/s00580-004-0523-5

Muir, J. P. (2011). The multi-faceted role of condensed tannins in the goat ecosystem. Small Ruminant Research, 98(1–3), 115–120. https://doi.org/10.1016/j.smallrumres.2011.03.028

Nasich, M., Sarah, O. L., Ciptadi, G., Busono, W., & Budiarto, A. (2019). The productivity of Kacang goat pre-weaning period in lowland and high-land in West Timor, Timor Island Indonesia. IOP Conference Series: Earth and Environmental Science, 247(1), 012017. https://doi.org/10.1088/1755-1315/247/1/012017

O’Loughlin, A., McGee, M., Waters, S.M., Doyle, S., & Earley, B., (2011). Examination of the bovine leukocyte environment using immunogenetic biomarkers to assess immunocompetence following exposure to weaning stress. BMC Veterinary Research, 7(1), 45. https://doi.org/10.1186/1746-6148-7-45

Olver, C. S. (2022). Erythrocyte structure and function. Schalm’s Veterinary Hematology, Seventh Edition, pp. 158–165. USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119500537.ch20

Pathipati, D., Jayasri, K., Supriya, B., & Kumar, A. V. N. S. (2020). Evaluation of serum creatine kinase (CK-MB) activity in Murrah buffaloes and Nellore sheep exposed to slaughter stress. International Journal of Current Microbiology and Applied Sciences, 9(5), 1308–1314. https://doi.org/10.20546/ijcmas.2020.905.145

Platzer, M., Kiese, S., Tybussek, T., Herfellner, T., Schneider, F., Schweiggert-Weisz, U., & Eisner, P. (2022). Radical scavenging mechanisms of phenolic compounds: A quantitative structure-property relationship (QSPR) Study. Frontiers in Nutrition, 9, 882458. https://doi.org/10.3389/fnut.2022.882458

Radojičić, B., Joksimović-Todorović, M., Bukvić, M., Simeunović, P., Kakishev, M., & Pračić, N. (2016). The influence of sodium propionate on blood glucose, insulin and cortisol concentrations in calves of different ages. Acta Veterinaria Brno, 85(2), 127–132. https://doi.org/10.2754/avb201685020127

Rahman, K. (2007). Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging, 2(2), 219–236. https://doi.org/10.2147/ciia.S12159903

Reece, W. O. (2015). The composition and functions of blood. Uemura EE (ed) Section II: Body fluids and homeostasis of Dukes’ physiology of domestic animals, 13th ed. Iowa, USA: Wiley Blackwell. Retrieved from https://scholar.google.co.id/scholar?cites=8248891002637517987&as_sdt=2005&sciodt=0,5&hl=id&authuser=3

Scanes, C. G. (2016). Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poultry Science, 95(9), 2208–2215. https://doi.org/10.3382/ps/pew137

Shawaf, T., Bulushi, S. A., Al-Ali, M. A., A Meligy, A. M., Salouci, M., & Hussen, J. (2021). Investigation of some trace elements and hematological and biochemical parameters in the blood of emaciated Omani goats. Veterinary World, 14(7), 1960–1965. https://doi.org/10.14202/vetworld.2021.1960-1965

Silvestri, L., & Nai, A. (2021). Iron and erythropoiesis: A mutual alliance. Seminars in Hematology, 58(3), 145–152. https://doi.org/10.1053/j.seminhematol.2021.05.002

Sitaresmi, P. I., Hudaya, M. F., Kumala, S., Herdis, H., Sofyan, A., Bintara, S., ..., & Widayati, D. T. (2023). Effect of short time precise dietary energy–protein in reproductive parameters of local crossbred dairy goats. Journal of Advanced Veterinary and Animal Research, 10(2), 257. https://doi.org/10.5455/javar.2023.j677

Sitaresmi, P. I., Hudaya, M. H., Herdis, H., Inounu, I., da Costa, M. A., Lupitawati, F. B. I., ..., & Widayati, D. T. (2024). Body condition score’s effects on blood metabolites and reproductive hormones in Saanen crossbreed (SAPERA) goats. AIP Conference Proceedings, 2957, 070068. https://doi.org/10.1063/5.0183940

Soetjipto, W., Adriansyah, R., A’yun, R. A. Q., Setiadi, T., Susanto, H., Solah, A., …., & Kurnia, I. (2019). Peluang usaha dan investasi rumput laut. Jakarta, Indonesia: Directorate Business and Investment of the Directorate General of Strengthening the Competitiveness of Marine and Fishery Products, Ministry of Marine Affairs and Fisheries.

Sovetkina, A., Nadir, R., Fung, J. N. M., Nadjarpour, A., & Beddoe, B. (2020). The physiological role of ghrelin in the regulation of energy and glucose homeostasis. Cureus, 12(5), e7941. https://doi.org/10.7759/cureus.7941

Stevens, J. B., Anderson, K. L., Correa, M. T., Stewart, T., & Braselton Jr, W. E. (1994). Hematologic, blood gas, blood chemistry, and serum mineral values for a sample of clinically healthy adult goats. Veterinary Clinical Pathology, 23(1), 19–24. https://doi.org/10.1111/j.1939-165X.1994.tb01011.x

Sutardi, T. (1980). Landasan ilmu nutrisi. Bogor, Indonesia: Department of Animal Nutrition and Feed Technology, IPB University. Retrieved from https://scholar.google.co.id/scholar?cluster=5183663923826618587&hl=id&as_sdt=2005&sciodt=0,5&authuser=3

Syafiqa, N. N., Zulkifli, I., Zuki, A. B. M., Meng Goh, Y., & Kaka, U. (2023). Physiological, haematological and electroencephalographic responses to heat stress in Katjang and Boer goats. Saudi Journal of Biological Sciences, 30(11), 103836. https://doi.org/10.1016/j.sjbs.2023.103836

Tedeschi, L. O., Muir, J. P., Naumann, H. D., Norris, A. B., Ramírez-Restrepo, C. A., & Mertens-Talcott, S. U. (2021). Nutritional aspects of ecologically relevant phytochemicals in ruminant production. Frontiers in Veterinary Science, 8, 628445. https://doi.org/10.3389/fvets.2021.628445

Tharwat, M. (2021). Alterations in acid-base balance, blood gases, and hematobiochemical profiles of whole-blood and thoracic fluid in goats with contagious caprine pleuropneumonia. Veterinary WorldI, 14(7), 1874–1878. https://doi.org/10.14202/vetworld.2021.1874-187

Van Dyke, B. R., & Saltman, P. (1995). Hemoglobin: A mechanism for the generation of hydroxyl radicals. Free Radical Biology and Medicine, 20(7), 985–989. https://doi.org/10.1016/0891-5849(95)02186-8

Wang, G., Zhu, Y., Feng, D., Yao, J., Cao, Y., & Deng, L. (2024). Hepatic gluconeogenesis and regulatory mechanisms in lactating ruminants: A literature review. Animal Research and One Health, 2024, 1–10. https://doi.org/10.1002/aro2.80

Williams, E. L., Rodriguez, S. M., Beitz, D. C., & Donkin, S. S. (2006). Effects of short-term glucagon administration on gluconeogenic enzymes in the liver of midlactation dairy cows. Journal of Dairy Science, 89(2), 693–703. https://doi.org/10.3168/jds.S0022-0302(06)72132-4

Wysocka, D., Snarska, A., & Sobiech, P. (2020). Iron in cattle health. Journal of Elementology, 25(3), 1175–1185. https://doi.org/10.5601/jelem.2020.25.2.1960

Yengkhom, R., Singh, P., Muwel, N., Raje, K., Handique, B., & Venkateswaran, K. (2019). Supplementation of brown seaweed (Turbinaria conoids) powder and its effect on blood metabolites and mineral profile in adult goats. Indian Journal of Animal Nutrition, 36(1), 103–106. http://dx.doi.org/10.5958/2231-6744.2019.00019.7

Refbacks

  • There are currently no refbacks.