The Efficiency of Seed Priming with Dead Sea Water for Improving Germination and Early Seedling Growth of Wheat (Triticum aestivum L.) under Salinity

Samih Mohammad Tamimi

Abstract

Salinity is considered the most critical environmental factor which negatively affects the germination and growth of plants. In this study, the potential of using Dead Sea water (DS) as a seed priming agent for the mitigation of the adverse effects of salinity on seed germination and growth performance of wheat (Triticum aestivum L.) was investigated. Germination of wheat seeds primed with different doses of DS; 0%, 5%, 10%, 15%, and 20% were evaluated under different saline conditions (0, 100, 200, and 300 mM NaCl). High salinity (300 mM NaCl) remarkably inhibited germination attributes and reduced seedling length. However, seeds primed with DS exhibited improved germination parameters and seedling growth. Among the different DS concentrations used, the 10% DS priming achieved the highest increase in final germination percentage tolerance, germination index, relative germination salt tolerance, and seedling length. The increased tolerance to salinity was associated with improved water imbibition, α-amylase activity, antioxidant capacity and osmotic homeostasis correlated with high proline and soluble sugar levels. In addition, DS priming increased the membrane stability index, and reduced malondialdehyde content and K+ leakage besides lowering Na+/K+ ratio. Overall, priming with DS could be a promising strategy for minimizing the damaging effects of salinity in wheat.

Keywords

abiotic stress; halopriming; plant physiology; seed germination; seedling growth

Full Text:

PDF

References

Asch, J., Johnson, K., Mondal, S., & Asch, F. (2022). Comprehensive assessment of extraction methods for plant tissue samples for determining sodium and potassium via flame photometer and chloride via automated flow analysis#. Journal of Plant Nutrition and Soil Science, 185(2), 308–316. https://doi.org/10.1002/jpln.202100344

Bajwa, A. A., Farooq, M., & Nawaz, A. (2018). Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants, 24(2), 239–249. https://doi.org/10.1007/s12298-018-0512-9

Barichello, H. A., Stefanello, R., Bastiani, G. G. D., & Neves, L. A. S. D. (2021). Effect of salt stress on germination and initial development of Ruta graveolens L. Hoehnea, 48, e1202020. https://doi.org/10.1590/2236-8906-120/2020

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/bf00018060

Biswas, S., Seal, P., Majumder, B., & Biswas, A. K. (2023). Efficacy of seed priming strategies for enhancing salinity tolerance in plants: An overview of the progress and achievements. Plant Stress, 9, 100186. https://doi.org/10.1016/j.stress.2023.100186

Bolton, A., & Simon, P. (2019). Variation for salinity tolerance during seed germination in diverse carrot [Daucus carota (L.)] germplasm. HortScience, 54(1), 38–44. https://doi.org/10.21273/hortsci13333-18

Cao, M., Wang, Z., Zhao, Q., Mao, J., Speiser, A., Wirtz, M., Hell, R., Zhu, J., & Xiang, C. (2014). Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. The Plant Journal, 77(4), 604–615. https://doi.org/10.1111/tpj.12407

Chele, K. H., Tinte, M. M., Piater, L. A., Dubery, I. A., & Tugizimana, F. (2021). Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective. Metabolites, 11(11), 724. https://doi.org/10.3390/metabo11110724

Chen, Z., Newman, I., Zhou, M., Mendham, N., Zhang, G., & Shabala, S. (2005). Screening plants for salt tolerance by measuring K+ flux: A case study for barley. Plant Cell & Environment, 28(10), 1230–1246. https://doi.org/10.1111/j.1365-3040.2005.01364.x

Clemensson-Lindell, A. (1994). Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: Applications and limitations. Plant and Soil, 159(2), 297–300. https://doi.org/10.1007/bf00009293

Costa, S. F., Martins, D., Agacka-Mołdoch, M., Czubacka, A., & de Sousa Araújo, S. (2018). Strategies to alleviate salinity stress in plants. Salinity Responses and Tolerance in Plants, Volume 1: Targeting Sensory, Transport and Signaling Mechanisms, pp. 307–337. https://doi.org/10.1007/978-3-319-75671-4_12

Cuin, T. A., Miller, A. J., Laurie, S. A., & Leigh, R. A. (2003). Potassium activities in cell compartments of salt-grown barley leaves. Journal of Experimental Botany, 54(383), 657–661. https://doi.org/10.1093/jxb/erg072

Espanany, A., Fallah, S., & Tadayyon, A. (2016). Seed priming improves seed germination and reduces oxidative stress in black cumin (Nigella sativa) in presence of cadmium. Industrial Crops and Products, 79, 195–204. https://doi.org/10.1016/j.indcrop.2015.11.016

Forni, C., & Borromeo, I. (2023). The utilization of seed priming as a tool to overcome salt and drought stresses: Is still a long way to go? Seeds, 2(4), 406–420. https://doi.org/10.3390/seeds2040031

Hichem, H., Mounir, D., & Naceur, E. A. (2009). Differential responses of two maize (Zea mays L.) varieties to salt stress: Changes on polyphenols composition of foliage and oxidative damages. Industrial Crops and Products, 30(1), 144–151. https://doi.org/10.1016/j.indcrop.2009.03.003

Hmissi, M., Krouma, A., García-Sánchez, F., & Chaieb, M. (2023). Potential of seed halopriming in the mitigation of salinity stress during germination and seedling establishment in durum wheat (Triticum durum Desf.). Plants, 13(1), 66. https://doi.org/10.3390/plants13010066

Hussain, S., Khan, F., Hussain, H. A., & Nie, L. (2016). Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Frontiers in Plant Science, 7, 178194. https://doi.org/10.3389/fpls.2016.00116

Irigoyen, J. J., Einerich, D. W., & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84(1), 55–60. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x

Javeed, H. M. R., Wang, X., Ali, M., Nawaz, F., Qamar, R., Rehman, A. U., Shehzad, M., Mubeen, M., Shabbir, R., Javed, T., Branca, F., Ahmar, S., & Ismail, I. A. (2021). Potential utilization of diluted seawater for the cultivation of some summer vegetable crops: Physiological and nutritional implications. Agronomy, 11(9), 1826. https://doi.org/10.3390/agronomy11091826

Johnson, R., & Puthur, J. T. (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, 247–257. https://doi.org/10.1016/j.plaphy.2021.02.034

Karlova, R., Boer, D., Hayes, S., & Testerink, C. (2021). Root plasticity under abiotic stress. Plant Physiology, 187(3), 1057–1070. https://doi.org/10.1093/plphys/kiab392

Khan, R. A., Amjid Khan, A., Qadri, T. A., & Iftikhar, M. (2020). Response of wheat (Triticum aestivum L.) to zinc sulphate and copper sulphate under salt stress. Pure and Applied Biology, 9(4), 2648–2658. https://doi.org/10.19045/bspab.2020.90281

Khetsha, Z., Van Der Watt, E., Masowa, M., Legodi, L., Satshi, S., Sadiki, L., & Moyo, K. (2024). Phytohormone-based biostimulants as an alternative mitigating strategy for horticultural plants grown under adverse multi-stress conditions: Common South African stress factors. Caraka Tani Journal of Sustainable Agriculture, 39(1), 167–193. https://doi.org/10.20961/carakatani.v39i1.80530

Kumari, V. V., Banerjee, P., Verma, V. C., Sukumaran, S., Chandran, M. a. S., Gopinath, K. A., Venkatesh, G., Yadav, S. K., Singh, V. K., & Awasthi, N. K. (2022). Plant nutrition: An effective way to alleviate abiotic stress in agricultural crops. International Journal of Molecular Sciences, 23(15), 8519. https://doi.org/10.3390/ijms23158519

Li, J., Gao, X., Chen, X., Fan, Z., Zhang, Y., Wang, Z., Shi, J., Wang, C., Zhang, H., Wang, L., & Zhao, Q. (2023). Comparative transcriptome responses of leaf and root tissues to salt stress in wheat strains with different salinity tolerances. Frontiers in Genetics, 14, 1015599. https://doi.org/10.3389/fgene.2023.1015599

Li, H., Mollier, A., Ziadi, N., Shi, Y., Parent, L. E., & Morel, C. (2017). Soybean root traits after 24 years of different soil tillage and mineral phosphorus fertilization management. Soil and Tillage Research, 165, 258–267. https://doi.org/10.1016/j.still.2016.09.002

Louis, N., Dhankher, O. P., & Puthur, J. T. (2023). Seed priming can enhance and retain stress tolerance in ensuing generations by inducing epigenetic changes and trans‐generational memory. Physiologia Plantarum, 175(2), e13881. https://doi.org/10.1111/ppl.13881

Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., & Garnczarska, M. (2016). Seed priming: New comprehensive approaches for an old empirical technique. InTech eBooks. https://doi.org/10.5772/64420

Mahboob, W., Rizwan, M., Irfan, M., Hafeez, O., Sarwar, N., Akhtar, M., Munir, M., Rani, R., Sabagh, A. E., & Shimelis, H. (2023). Salinity tolerance in wheat: Responses, mechanisms and adaptation approaches. Applied Ecology and Environmental Research, 21(6), 5299–5328. https://doi.org/10.15666/aeer/2106_52995328

Majeed, A., Muhammad, Z., Islam, S., & Ahmad, H. (2019). Salinity imposed stress on principal cereal crops and employing seed priming as a sustainable management approach. Acta Ecologica Sinica, 39(4), 280–283. https://doi.org/10.1016/j.chnaes.2018.09.004

Mansour, M. M. F., Ali, E. F., & Salama, K. H. A. (2019). Does seed priming play a role in regulating reactive oxygen species under saline conditions?. Reactive oxygen, nitrogen and sulfur species in plants: Production, metabolism, signaling and defense mechanisms, 437–488. https://doi.org/10.1002/9781119468677.ch18

Maswada, H., & El‐Kader, N. A. (2015). Redox halopriming: A promising strategy for inducing salt tolerance in bread wheat. Journal of Agronomy and Crop Science, 202(1), 37–50. https://doi.org/10.1111/jac.12123

Morsy, M. R., Jouve, L., Hausman, J. F., Hoffmann, L., & Stewart, J. M. (2007). Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. Journal of Plant Physiology, 164(2), 157–167. https://doi.org/10.1016/j.jplph.2005.12.004

Nie, L., Song, S., Yin, Q., Zhao, T., Liu, H., He, A., & Wang, W. (2022). Enhancement in seed priming-induced starch degradation of rice seed under chilling stress via ga-mediated α-amylase expression. Rice, 15(1), 19. https://doi.org/10.1186/s12284-022-00567-3

Nissenbaum, A. (1975). The microbiology and biogeochemistry of the Dead Sea. Microbial Ecology, 2(2), 139–161. https://doi.org/10.1007/bf02010435

Patanè, C., Cavallaro, V., & Cosentino, S. L. (2009). Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures. Industrial Crops and Products, 30(1), 1–8. https://doi.org/10.1016/j.indcrop.2008.12.005

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019

Saddiq, M. S., Iqbal, S., Afzal, I., Ibrahim, A. M. H., Bakhtavar, M. A., Hafeez, M. B., Jahanzaib, N., & Maqbool, M. M. (2019). Mitigation of salinity stress in wheat (Triticum aestivum L.) seedlings through physiological seed enhancements. Journal of Plant Nutrition, 42(10), 1192–1204. https://doi.org/10.1080/01904167.2019.1609509

Sairam, R., & Srivastava, G. (2002). Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162(6), 897–904. https://doi.org/10.1016/s0168-9452(02)00037-7

Seifikalhor, M., Aliniaeifard, S., Shomali, A., Azad, N., Hassani, B., Lastochkina, O., & Li, T. (2019). Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signaling & Behavior, 14(11), 1665455. https://doi.org/10.1080/15592324.2019.1665455

Singh, H., Jassal, R. K., Kang, J. S., Sandhu, S. S., Kang, H., & Grewal, K. (2015). Seed priming techniques in field crops-A review. Agricultural Reviews, 36(4), 251–264. https://doi.org/10.18805/ag.v36i4.6662

Turhan, E., & Asgher, M. (2024). Editorial: The contribution of molecular priming to abiotic stress tolerance in plants. Frontiers in Plant Science, 14, 1352312. https://doi.org/10.3389/fpls.2023.1352312

Uçarlı, C. (2021). Effects of salinity on seed germination and early seedling stage. IntechOpen eBooks. https://doi.org/10.5772/intechopen.93647

Yang, A., Akhtar, S. S., Iqbal, S., Qi, Z., Alandia, G., Saddiq, M. S., & Jacobsen, S. (2017). Saponin seed priming improves salt tolerance in quinoa. Journal of Agronomy and Crop Science, 204(1), 31–39. https://doi.org/10.1111/jac.12229

Zhang, Y., Fang, J., Wu, X., & Dong, L. (2018). Na+/K+ balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L.) under salt stress. BMC Plant Biology, 18(1), 375. https://doi.org/10.1186/s12870-018-1586-9

Zhu, Y., Jiang, X., Zhang, J., He, Y., Zhu, X., Zhou, X., Gong, H., Yin, J., & Liu, Y. (2020). Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiology and Biochemistry, 156, 209–220. https://doi.org/10.1016/j.plaphy.2020.09.014

Zulfiqar, F., Nafees, M., Chen, J., Darras, A., Ferrante, A., Hancock, J. T., Ashraf, M., Zaid, A., Latif, N., Corpas, F. J., Altaf, M. A., & Siddique, K. H. M. (2022). Chemical priming enhances plant tolerance to salt stress. Frontiers in Plant Science, 13, 946922. https://doi.org/10.3389/fpls.2022.946922

Refbacks

  • There are currently no refbacks.