Utilization of Nostoc piscinale as Potential Biofertilizer to the Growth and Development of Oryza sativa L.
Abstract
Keywords
Full Text:
PDFReferences
Abebe, T. G., Tamtam, M. R., Abebe, A. A., Abtemariam, K. A., Shigut, T. G., Dejen, Y. A., & Haile, E. G. (2022). Growing use and impacts of chemical fertilizers and assessing alternative organic fertilizer sources in Ethiopia. Applied and Environmental Soil Science, 4738416. https://doi.org/10.1155/2022/4738416
Aguilera, A., Klemenčič, M., Sueldo, D. J., Rzymski, P., Giannuzzi, L., & Martin, M. V. (2021). Cell death in cyanobacteria: Current understanding and recommendations for a consensus on its nomenclature. Frontiers in Microbiology, 12, 631654. http://doi.org/10.3389/fmicb.2021.631654
Ananya, A. K., & Ahmad, I. Z. (2014). Cyanobacteria “the blue green algae” and its novel applications: A brief review. International Journal of Innovation and Applied Studies, 7(1), 251–261. Retrieved from http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-14-174-05
Anees, S., Suhail, S., Pathak, N., & Zeeshan, M. (2014). Potential use of rice field cyanobacterium Nostoc muscorum in the evaluation of butachlor induced toxicity and their degradation. Bioinformation, 10(6), 365–370. http://dx.doi.org/10.6026/97320630010365
Banayo, N. P. M., Cruz, P. C. S., Aguilar, E. A., Badayos, R. B., & Haefele, S. M. (2012). Evaluation of biofertilizers in irrigated rice: Effects on grain yield at different fertilizer rates. Agriculture, 2(1), 73–86. https://doi.org/10.3390/agriculture2010073
Baracho, D. H., & Lombardi, A. T. (2023). Study of the growth and biochemical composition of 20 species of cyanobacteria cultured in cylindrical photobioreactors. Microbial Cell Factories, 22(1), 36. https://doi.org/10.1186/s12934-023-02035-z
Berman-Frank, I., Lundgren, P., & Falkowski, P. (2003). Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Research in Microbiology, 154(3), 157–164. https://doi.org/10.1016/S0923-2508(03)00029-9
Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1), 66. https://doi.org/10.1186/1475-2859-13-66
Bisht, N., & Chauhan, P. S. (2020). Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. Soil Contamination Threats and Sustainable Solutions. IntechOpen, 107–113. http://doi.org/10.5772/intechopen.94593
Brodt, S., Six, J., Feenstra, G., Ingels, C., & Campbell, D. (2011). Sustainable agriculture. Nature Education Knowledge, 3(10), 1. Retrieved from https://www.nature.com/scitable/knowledge/library/sustainable-agriculture-23562787/
Change, T. T., & Bardenas, E. A. (1965). The morphological and varietal characteristics of the rice plant. Los Banos, Philippines: The International Rice Research Institute (IRRI). Retrieved from https://books.google.co.id/books?id=xoR0r5Nam9QC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Chaurasia, A. K., & Apte, S. K. (2011). Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential. Applied and Environmental Microbiology, 77(2), 395–399. https://doi.org/10.1128/AEM.01714-10
Chittapun, S., Limbipichai, S., Amnuaysin, N., Boonkerd, R., & Charoensook, M. (2018). Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: A pot experiment. Journal of Applied Phycology, 30, 79–85. https://doi.org/10.1007/s10811-017-1138-y
El Sheek, M. M., Zayed, M. A., & Elmossel, F. K. (2018). Effect of cyanobacteria isolates on rice seeds germination in saline soil. Baghdad Science Journal, 15(1), 16–21. http://dx.doi.org/10.21123/bsj.2018.15.1.0016
Fulweiler, R. W., Heiss, E. M., Rogener, M. K., Newell, S. E., LeCleir, G. R., Kortebein, S. M., & Wilhelm, S. W. (2015). Examining the impact of acetylene on N-fixation and the active sediment microbial community. Frontiers in Microbiology, 6, 138545. https://doi.org/10.3389/fmicb.2015.00418
Hardy, R. W., Holsten, R. D., Jackson, E. K., & Burns, R. (1968). The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation. Plant physiology, 43(8), 1185–1207. https://doi.org/10.1104/pp.43.8.1185
Hasan, K., Tanaka, T. S., Alam, M., Ali, R., & Saha, C. K. (2020). Impact of modern rice harvesting practices over traditional ones. Revies in Agricultural Science, 8, 89–108. https://doi.org/10.7831/ras.8.0_89
Ikhajiagbe, B., Igiebor, F. A., & Ogwu, M. C. (2021). Growth and yield performances of rice (Oryza sativa var. nerica) after exposure to biosynthesized nanoparticles. Bulletin of the National Research Centre, 45, 62. https://doi.org/10.1186/s42269-021-00508-y
Issa, A. A., Abd-Alla, M. H., & Ohyama, T. (2014). Nitrogen fixing cyanobacteria: Future prospect. Advances in biology and ecology of nitrogen fixation, 2, 23–48. https://doi.org/10.5772/56995
Kumar, K., Mella-Herrera, R. A., & Golden, J. W. (2010). Cyanobacterial heterocysts. Cold Spring Harbor perspectives in biology, 2(4), a000315. Retrieved from https://cshperspectives.cshlp.org/content/2/4/a000315.full.pdf+html
Larue, T. A. (1973). Estimation of nitrogenase using for ethylene colorimetric determination. Plant Physiology, 51, 1074–1075. https://doi.org/10.1104/pp.51.6.1074
Li, Y., Lin, Y., Loughlin, P. C., & Chen, M. (2014). Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris–a filamentous cyanobacterium containing chlorophyll f. Frontiers in Plant Science, 5, 79927. https://doi.org/10.3389/fpls.2014.00067
Malam Issa, O., Défarge, C., Le Bissonnais, Y., Marin, B., Duval, O., Bruand, A., ... & Annerman, M. (2007). Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant and Soil, 290, 209–219. https://doi.org/10.5897/AJB11.2111
Maqubela, M. P., Mnkeni, P. N. S., Issa, O. M., Pardo, M. T., & D’acqui, L. P. (2009). Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant and Soil, 315, 79–92. https://doi.org/10.1111/j.1747-0765.2010.00487.x
Martinez-Castillo, R. (2016). Sustainable agricultural production systems. Technologia en Marcha, 29(1), 70–85. http://dx.doi.org/10.18845/tm.v29i5.2518
Mishra, U., & Pabbi, S. (2004). Cyanobacteria: A potential biofertilizer for rice. Resonance, 9(6), 6–10. https://doi.org/10.1007/BF02839213
Mittal, A. (2009). United Nations Conference on Trade and Development. G-24 discussion paper series: Research papers for the Intergovernmental Group of twenty-four on International Monetary Affairs (Vol. 56). New York; United Nations.
Mohidem, N. A., Hashim, N., Shamsudin, R., & Che Man, H. (2022). Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 12(6), 741. https://doi.org/10.3390/agriculture12060741
Ördög, V., Stirk, W., Takács, G., Pőthe, P., Illés, Á., Bojtor, C., Széles, A., Tóth, B., Van Staden, J., & Nagy, J. (2021). Plant biostimulating effects of the cyanobacterium Nostoc piscinale on maize (Zea mays L.) in field experiments. South African Journal of Botany, 140, 153–160. https://doi.org/10.1016/j.sajb.2021.03.026
Ouko, K. O., & Odiwuor, M. O. (2023). Contributing factors to the looming food crisis in Sub-Saharan Africa: Opportunities for policy insight. Cogent Social Sciences, 9(1), 2173716. https://doi.org/10.1080/23311886.2023.2173716
Pagels, F., Pereira, R. N., Vicente, A. A., & Guedes, A. C. (2021). Extraction of pigments from microalgae and cyanobacteria—A review on current methodologies. Applied Sciences, 11(11), 5187. https://doi.org/10.3390/app11115187
Pernil, R., Herrero, A., & Flores, E. (2010). Catabolic function of compartmentalized alanine dehydrogenase in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. Journal of Bacteriology, 192(19), 5165–5172. https://doi.org/10.1128/JB.00603-10
Porra, R., Thompson, W., & Kriedemann, P. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975(3), 384–394. https://doi.org/10.1016/S0005-2728(89)80347-0
Pramanik, K., & Bera, A. K. (2013). Effect of seedling age and nitrogen fertilizer on growth, chlorophyll content, yield and economics of hybrid rice (Oryza sativa L.). International Journal of Agronomy and Plant Production, 4(5), 3489–3499. Retrieved from http://www.legato-project.net/NPDOCS/3489-3499.pdf
Prasanna, R., Jaiswal, P., Shrikrishna, J., Nain, L., & Rana, A. (2012). Evaluating the potential of rhizo-cyanobacteria as inoculants for rice and wheat. Journal of Agricultural Technology, 8(1), 157–171. https://doi.org/10.1017/S001447971200107X
Prasanna, R., Sharma, E., Sharma, P., Kumar, A., Kumar, R., Gupta, V., ... & Nain, L. (2013). Soil fertility and establishment potential of inoculated cyanobacteria in rice crop grown under non-flooded conditions. Paddy and Water Environment, 11, 175–183, https://doi.org/10.1007/s10333-011-0302-2
Rani, S., & Sukumari, P. (2013). Root growth, nutrient uptake and yield of medicinal rice Njavara under different establishment techniques and nutrient sources. American Journal of Plant Sciences, 4(8), 1568–1573. http://dx.doi.org/10.4236/ajps.2013.48189
Rother, M. B., Sosa, M. S., Kim, M. D., Kohler, L., Kohler, M. L. P., Pierre, M. G., ... & Fayad, D. (2022). Tackling the global food crisis: Impact, policy response, and the role of the IMF. International Monetary Fund, 004, 38. https://doi.org/10.5089/9798400221972.068
Sasadara, M. M. V., Nayaka, N. M. D. M. W., Yuda, P. E. S. K., Dewi, N. L. K. A. A., Cahyaningsih, E., Wirawan, I. G. P., & Silalahi, D. (2021). Optimization of chlorophyll extraction solvent of bulung sangu (Gracilaria sp.) seaweed. IOP Conference Series: Earth and Environmental Science, 913, 012073. https://doi.org/10.1088/1755-1315/913/1/012073
Seo, D. H., Seomun, S., Choi, Y. D., & Jang, G. (2020). Root development and stress tolerance in rice: The key to improving stress tolerance without yield penalties. International Journal of Molecular Sciences, 21(5), 1807. https://doi.org/10.3390/ijms21051807
Takács, G., Stirk, W., Gergely, I., Molnár, Z., Van Staden, J., & Ördög, V. (2019). Biostimulating effects of the cyanobacterium Nostoc piscinale on winter wheat in field experiments. South African Journal of Botany, 126, 99–106. https://doi.org/10.1016/j.sajb.2019.06.033
Thiel, T., & Pratte, B. (2001). Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium Anabaena variabilis ATCC 29413. Journal of Bacteriology, 183(1), 280–286. https://doi.org/10.1128/JB.183.1.280-286.2001
Vaughan, A. (2020). Global food crisis looms. NewScientist, 246(3283), 7. https://doi.org/10.1016/S0262-4079(20)30946-5
Vincent, W. F. (2009). Cyanobacteria. Encyclopedia of Inland Waters, 3, 226–232. https://doi.org/10.1016/B978-012370626-3.00127-7
Wiig, J. A., Rebelein, J. G., & Hu, Y. (2014). Nitrogenase complex. https://doi.org/10.1002/9780470015902.a0001386.pub2
Yéprémian, C., Catherine, A., Bernard, C., Congestri, R., Elersek, T., & Pilkaityte, R. (2016). Chlorophyll a extraction and determination. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 331–334. https://doi.org/10.1002/9781119068761.ch34
Zavřel, T., Sinetova, M. A., & Červený, J. (2015). Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Bio-protocol, 5(9), e1467. http://dx.doi.org/10.21769/BioProtoc.1467
Zhao, M., Lin, Y., & Chen, H. (2020). Improving nutritional quality of rice for human health. Theoretical and Applied Genetics, 133, 1397–1413. http://dx.doi.org/10.1007/s00122-019-03530-x
Refbacks
- There are currently no refbacks.