Utilization of Nostoc piscinale as Potential Biofertilizer to the Growth and Development of Oryza sativa L.

Rebecca Go Oco, Mark Kevin Devanadera, Ruel Valerio Robles de Grano


Nostoc is a blue-green cyanobacteria that produce their food through photosynthesis and nitrogen fixation. These organisms undergo nitrogen fixation and provide a potential nitrogen source for growth and development. Since rice is known as one of the world’s staple foods, especially in Asia, this study aims to determine the utilization of Nostoc piscinale as a potential biofertilizer for planting rice crops. N. piscinale was inoculated into three subcultures and incubated for 87 to 170 days, and then analyzed for nitrogen-fixing activity and rice plant development. Growth of cyanobacteria showed a significant increase in chlorophyll a starting from day 30 up to day 170 while nitrogen-fixing activity remained constant from day 4. On the other hand, the growth and development of rice treated with cyanobacteria showed correlated trends with commercial fertilizer (CSF) in terms of root and shoot (growth and fresh weight) and chlorophyll a content with no statistical differences (p-value ≥ 0.05). Nitrogen tests indicate the utilization of ammonia produced by N. piscinale and the change in soil pH. After harvesting the samples at 20 days and measuring the soil pH, the cyanobacterial samples were seen to lower the soil pH before planting, which is significantly different from the untreated and CSF-treated samples. The utilization of nitrogen for the growth and development of Oryza sativa subsp. indica proved that N. piscinale would be a positive alternative source of nitrogen due to the results obtained from the soil nitrogen composition and soil pH.


biofertilizer; cyanobacteria; nitrogen fixation; nutrient availability; rice development

Full Text:



Abebe, T. G., Tamtam, M. R., Abebe, A. A., Abtemariam, K. A., Shigut, T. G., Dejen, Y. A., & Haile, E. G. (2022). Growing use and impacts of chemical fertilizers and assessing alternative organic fertilizer sources in Ethiopia. Applied and Environmental Soil Science, 4738416. https://doi.org/10.1155/2022/4738416

Aguilera, A., Klemenčič, M., Sueldo, D. J., Rzymski, P., Giannuzzi, L., & Martin, M. V. (2021). Cell death in cyanobacteria: Current understanding and recommendations for a consensus on its nomenclature. Frontiers in Microbiology, 12, 631654. http://doi.org/10.3389/fmicb.2021.631654

Ananya, A. K., & Ahmad, I. Z. (2014). Cyanobacteria “the blue green algae” and its novel applications: A brief review. International Journal of Innovation and Applied Studies, 7(1), 251–261. Retrieved from http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-14-174-05

Anees, S., Suhail, S., Pathak, N., & Zeeshan, M. (2014). Potential use of rice field cyanobacterium Nostoc muscorum in the evaluation of butachlor induced toxicity and their degradation. Bioinformation, 10(6), 365–370. http://dx.doi.org/10.6026/97320630010365

Banayo, N. P. M., Cruz, P. C. S., Aguilar, E. A., Badayos, R. B., & Haefele, S. M. (2012). Evaluation of biofertilizers in irrigated rice: Effects on grain yield at different fertilizer rates. Agriculture, 2(1), 73–86. https://doi.org/10.3390/agriculture2010073

Baracho, D. H., & Lombardi, A. T. (2023). Study of the growth and biochemical composition of 20 species of cyanobacteria cultured in cylindrical photobioreactors. Microbial Cell Factories, 22(1), 36. https://doi.org/10.1186/s12934-023-02035-z

Berman-Frank, I., Lundgren, P., & Falkowski, P. (2003). Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Research in Microbiology, 154(3), 157–164. https://doi.org/10.1016/S0923-2508(03)00029-9

Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1), 66. https://doi.org/10.1186/1475-2859-13-66

Bisht, N., & Chauhan, P. S. (2020). Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. Soil Contamination Threats and Sustainable Solutions. IntechOpen, 107–113. http://doi.org/10.5772/intechopen.94593

Brodt, S., Six, J., Feenstra, G., Ingels, C., & Campbell, D. (2011). Sustainable agriculture. Nature Education Knowledge, 3(10), 1. Retrieved from https://www.nature.com/scitable/knowledge/library/sustainable-agriculture-23562787/

Change, T. T., & Bardenas, E. A. (1965). The morphological and varietal characteristics of the rice plant. Los Banos, Philippines: The International Rice Research Institute (IRRI). Retrieved from https://books.google.co.id/books?id=xoR0r5Nam9QC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Chaurasia, A. K., & Apte, S. K. (2011). Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential. Applied and Environmental Microbiology, 77(2), 395–399. https://doi.org/10.1128/AEM.01714-10

Chittapun, S., Limbipichai, S., Amnuaysin, N., Boonkerd, R., & Charoensook, M. (2018). Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: A pot experiment. Journal of Applied Phycology, 30, 79–85. https://doi.org/10.1007/s10811-017-1138-y

El Sheek, M. M., Zayed, M. A., & Elmossel, F. K. (2018). Effect of cyanobacteria isolates on rice seeds germination in saline soil. Baghdad Science Journal, 15(1), 16–21. http://dx.doi.org/10.21123/bsj.2018.15.1.0016

Fulweiler, R. W., Heiss, E. M., Rogener, M. K., Newell, S. E., LeCleir, G. R., Kortebein, S. M., & Wilhelm, S. W. (2015). Examining the impact of acetylene on N-fixation and the active sediment microbial community. Frontiers in Microbiology, 6, 138545. https://doi.org/10.3389/fmicb.2015.00418

Hardy, R. W., Holsten, R. D., Jackson, E. K., & Burns, R. (1968). The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation. Plant physiology, 43(8), 1185–1207. https://doi.org/10.1104/pp.43.8.1185

Hasan, K., Tanaka, T. S., Alam, M., Ali, R., & Saha, C. K. (2020). Impact of modern rice harvesting practices over traditional ones. Revies in Agricultural Science, 8, 89–108. https://doi.org/10.7831/ras.8.0_89

Ikhajiagbe, B., Igiebor, F. A., & Ogwu, M. C. (2021). Growth and yield performances of rice (Oryza sativa var. nerica) after exposure to biosynthesized nanoparticles. Bulletin of the National Research Centre, 45, 62. https://doi.org/10.1186/s42269-021-00508-y

Issa, A. A., Abd-Alla, M. H., & Ohyama, T. (2014). Nitrogen fixing cyanobacteria: Future prospect. Advances in biology and ecology of nitrogen fixation, 2, 23–48. https://doi.org/10.5772/56995

Kumar, K., Mella-Herrera, R. A., & Golden, J. W. (2010). Cyanobacterial heterocysts. Cold Spring Harbor perspectives in biology, 2(4), a000315. Retrieved from https://cshperspectives.cshlp.org/content/2/4/a000315.full.pdf+html

Larue, T. A. (1973). Estimation of nitrogenase using for ethylene colorimetric determination. Plant Physiology, 51, 1074–1075. https://doi.org/10.1104/pp.51.6.1074

Li, Y., Lin, Y., Loughlin, P. C., & Chen, M. (2014). Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris–a filamentous cyanobacterium containing chlorophyll f. Frontiers in Plant Science, 5, 79927. https://doi.org/10.3389/fpls.2014.00067

Malam Issa, O., Défarge, C., Le Bissonnais, Y., Marin, B., Duval, O., Bruand, A., ... & Annerman, M. (2007). Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant and Soil, 290, 209–219. https://doi.org/10.5897/AJB11.2111

Maqubela, M. P., Mnkeni, P. N. S., Issa, O. M., Pardo, M. T., & D’acqui, L. P. (2009). Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant and Soil, 315, 79–92. https://doi.org/10.1111/j.1747-0765.2010.00487.x

Martinez-Castillo, R. (2016). Sustainable agricultural production systems. Technologia en Marcha, 29(1), 70–85. http://dx.doi.org/10.18845/tm.v29i5.2518

Mishra, U., & Pabbi, S. (2004). Cyanobacteria: A potential biofertilizer for rice. Resonance, 9(6), 6–10. https://doi.org/10.1007/BF02839213

Mittal, A. (2009). United Nations Conference on Trade and Development. G-24 discussion paper series: Research papers for the Intergovernmental Group of twenty-four on International Monetary Affairs (Vol. 56). New York; United Nations.

Mohidem, N. A., Hashim, N., Shamsudin, R., & Che Man, H. (2022). Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 12(6), 741. https://doi.org/10.3390/agriculture12060741

Ördög, V., Stirk, W., Takács, G., Pőthe, P., Illés, Á., Bojtor, C., Széles, A., Tóth, B., Van Staden, J., & Nagy, J. (2021). Plant biostimulating effects of the cyanobacterium Nostoc piscinale on maize (Zea mays L.) in field experiments. South African Journal of Botany, 140, 153–160. https://doi.org/10.1016/j.sajb.2021.03.026

Ouko, K. O., & Odiwuor, M. O. (2023). Contributing factors to the looming food crisis in Sub-Saharan Africa: Opportunities for policy insight. Cogent Social Sciences, 9(1), 2173716. https://doi.org/10.1080/23311886.2023.2173716

Pagels, F., Pereira, R. N., Vicente, A. A., & Guedes, A. C. (2021). Extraction of pigments from microalgae and cyanobacteria—A review on current methodologies. Applied Sciences, 11(11), 5187. https://doi.org/10.3390/app11115187

Pernil, R., Herrero, A., & Flores, E. (2010). Catabolic function of compartmentalized alanine dehydrogenase in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. Journal of Bacteriology, 192(19), 5165–5172. https://doi.org/10.1128/JB.00603-10

Porra, R., Thompson, W., & Kriedemann, P. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975(3), 384–394. https://doi.org/10.1016/S0005-2728(89)80347-0

Pramanik, K., & Bera, A. K. (2013). Effect of seedling age and nitrogen fertilizer on growth, chlorophyll content, yield and economics of hybrid rice (Oryza sativa L.). International Journal of Agronomy and Plant Production, 4(5), 3489–3499. Retrieved from http://www.legato-project.net/NPDOCS/3489-3499.pdf

Prasanna, R., Jaiswal, P., Shrikrishna, J., Nain, L., & Rana, A. (2012). Evaluating the potential of rhizo-cyanobacteria as inoculants for rice and wheat. Journal of Agricultural Technology, 8(1), 157–171. https://doi.org/10.1017/S001447971200107X

Prasanna, R., Sharma, E., Sharma, P., Kumar, A., Kumar, R., Gupta, V., ... & Nain, L. (2013). Soil fertility and establishment potential of inoculated cyanobacteria in rice crop grown under non-flooded conditions. Paddy and Water Environment, 11, 175–183, https://doi.org/10.1007/s10333-011-0302-2

Rani, S., & Sukumari, P. (2013). Root growth, nutrient uptake and yield of medicinal rice Njavara under different establishment techniques and nutrient sources. American Journal of Plant Sciences, 4(8), 1568–1573. http://dx.doi.org/10.4236/ajps.2013.48189

Rother, M. B., Sosa, M. S., Kim, M. D., Kohler, L., Kohler, M. L. P., Pierre, M. G., ... & Fayad, D. (2022). Tackling the global food crisis: Impact, policy response, and the role of the IMF. International Monetary Fund, 004, 38. https://doi.org/10.5089/9798400221972.068

Sasadara, M. M. V., Nayaka, N. M. D. M. W., Yuda, P. E. S. K., Dewi, N. L. K. A. A., Cahyaningsih, E., Wirawan, I. G. P., & Silalahi, D. (2021). Optimization of chlorophyll extraction solvent of bulung sangu (Gracilaria sp.) seaweed. IOP Conference Series: Earth and Environmental Science, 913, 012073. https://doi.org/10.1088/1755-1315/913/1/012073

Seo, D. H., Seomun, S., Choi, Y. D., & Jang, G. (2020). Root development and stress tolerance in rice: The key to improving stress tolerance without yield penalties. International Journal of Molecular Sciences, 21(5), 1807. https://doi.org/10.3390/ijms21051807

Takács, G., Stirk, W., Gergely, I., Molnár, Z., Van Staden, J., & Ördög, V. (2019). Biostimulating effects of the cyanobacterium Nostoc piscinale on winter wheat in field experiments. South African Journal of Botany, 126, 99–106. https://doi.org/10.1016/j.sajb.2019.06.033

Thiel, T., & Pratte, B. (2001). Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium Anabaena variabilis ATCC 29413. Journal of Bacteriology, 183(1), 280–286. https://doi.org/10.1128/JB.183.1.280-286.2001

Vaughan, A. (2020). Global food crisis looms. NewScientist, 246(3283), 7. https://doi.org/10.1016/S0262-4079(20)30946-5

Vincent, W. F. (2009). Cyanobacteria. Encyclopedia of Inland Waters, 3, 226–232. https://doi.org/10.1016/B978-012370626-3.00127-7

Wiig, J. A., Rebelein, J. G., & Hu, Y. (2014). Nitrogenase complex. https://doi.org/10.1002/9780470015902.a0001386.pub2

Yéprémian, C., Catherine, A., Bernard, C., Congestri, R., Elersek, T., & Pilkaityte, R. (2016). Chlorophyll a extraction and determination. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 331–334. https://doi.org/10.1002/9781119068761.ch34

Zavřel, T., Sinetova, M. A., & Červený, J. (2015). Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Bio-protocol, 5(9), e1467. http://dx.doi.org/10.21769/BioProtoc.1467

Zhao, M., Lin, Y., & Chen, H. (2020). Improving nutritional quality of rice for human health. Theoretical and Applied Genetics, 133, 1397–1413. http://dx.doi.org/10.1007/s00122-019-03530-x


  • There are currently no refbacks.