Physiological Responses of Indigenous Vegetable of Sintrong (Crassocephalum crepidioides) due to Exposure to High Temperature

Ulfiana Mahira Rahma Utama, Ani Kurniawati, Didah Nur Faridah

Abstract

Sintrong is an Indonesian indigenous vegetable with leaves used for vegetables, digestive disorders, and burns. Changes in the environment due to an increase in temperature affect the growth and quality of sitrong, and its existence in the nature is threatened. This study aims to obtain information about the effect of exposure to high temperatures on the physiological character and flavonoid content of indigenous sintrong vegetables and obtain accession of sintrong, which can be developed as a functional vegetable. The Nested randomized group design was applied with two factors, temperature differences as the main plot and accession as a second plot. Four replications were conducted for each accession in the Cikabayan experimental garden of IPB. The results showed that exposure to high temperatures up to 32 °C increased the speed of flowering age, which was 4.76% and 7.14% faster and showed a high wilting rate of 36.66%, but decreased leaf area index up to 30.30% and 42.42% at the conditions above ambient temperature exposure (control). Flavonoid content did not show any effect due to exposure to high temperatures. The flavonoid content reached 1695.38 and 1834.83 mg QE 100 g-1. Bogor 1 accession showed the best performance so that the plants can be developed for functional vegetables. Based on the research findings, sintrong should be harvested earlier before flowering to obtain high leaf production and good-quality vegetables.

Keywords

anthocyanins; flavonoid; heat stress; stomata conductance; vegetables

Full Text:

PDF

References

Abdelhakim, L. O. A., Rosenqvist, E., Wollenweber, B., Spyroglou, I., Ottosen, C. O., & Panzarová, K. (2021). Investigating combined drought- and heat stress effects in wheat under controlled conditions by dynamic image-based phenotyping. Agronomy, 11(2), 364. https://doi.org/10.3390/agronomy11020364

Adjatin, A., Dansi, A., Badoussi, E., Sanoussi, A., Dansi, M., Azokpota, P., Ahissou, H., Akouegninou, A., Akpagana, K., & Sanni, A. (2013). Proximate, mineral and vitamin C composition of vegetable Gbolo [Crassocephalum rubens (Juss. ex Jacq.) S. Moore and C. crepidioides (Benth.) S. Moore] in Benin. International Journal of Biolology and Chemical Sciences, 7(1), 319–331. https://doi.org/10.4314/ijbcs.v7i1.27

Alhaithloul, H. A. S., Galal, G. H., & Seufi, A. E. M. (2021). Effect of extreme temperature changes on phenolic, flavonoid contents and antioxidant activity of tomato seedlings (Solanum lycopersicum L.). PeerJ, 9, e11193. https://doi.org/10.7717/peerj.11193

Almeselmani, M., & Viswanathan, P. S. D. (2012). Effects of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance. Plant Stress, 6(2), 25–32. Retrieved from http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/PS_6(1)/PS_6(1)25-32o.pdf

Alshameri, A., Alqurainy, F., Khan, S., Nadeem, M., Gaafar, A. R., Alameri, A., Tarroum M., Alansi, & Ashraf, S. (2019). Morpho-physiological responses of guar [Cyamopsis tetragonoloba (L.) Taub.] to multiple stresses of drought, heat and salinity. Pakistan Journal Botany, 51(3). https://doi.org/10.30848/PJB2019-3(5)

Amada, G., Kosugi, Y., Kitayama, Y., & Onoda, Y. (2020). Roles of leaf trichomes in heat transfers and gas-exchange characteristics across environmental gradients (Thesis). Kyoto, Japan: Kyoto University. https://doi.org/10.22541/au.160794364.42389606/v1

Anggraini, N., Faridah, E., & Indrioko, S. (2016). Pengaruh cekaman kekeringan terhadap perilaku fisiologis dan pertumbuhan bibit black locust (Robinia pseudoacacia). Jurnal Ilmu Kehutanan, 9(1), 40–56. https://doi.org/10.22146/jik.10183

Aniya, Y., Koyama, T., Miyagi, C., Miyahira, M., Inomata, C., Kinoshita, S., & Ichiba, T. (2005). Free radical scavenging and hepatoprotective actions of the medicinal herb, Crossocephalum crepidioides from the Okinawa Islands. Biological and Pharmaceutical Bulletin, 28(1), 19–23. https://doi.org/10.1248/bpb.28.19

Bahar, E., Akter, K. M., Lee, G. H., Lee, H. Y., Rashid, H. O., Choi, M. K., Bhattarai, K. R., Hossain, M. M. M., Ara, J., Mazumder, K., Raihan, O., Chae, H. J., & Yoon, H. (2017). β-Cell protection and antidiabetic activities of Crassocephalum crepidioides (Asteraceae) Benth. S. Moore extract against alloxan-induced oxidative stress via regulation of apoptosis and reactive oxygen species (ROS). BMC Complement and Alternative Medicine, 17, 179. https://doi.org/10.1186/s12906-017-1697-0

Bashandy, T., & El-Shaieny, A. H. (2021). Morphological and molecular marker screening for drought tolerance in Egyptian Jew’s Mallow (Corchorus olitorius L.) landraces. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 69(1), 79–90. https://doi.org/10.11118/ACTAUN.2021.009

Can, N. M., Thao, D. T. P., & Gil, G. (2020). Wound healing activity of Crassocephalum crepidioides (Benth.) S. Moore. leaf hydroethanolic extract. Oxidative Medicine and Cellular Longevity, 2483187. https://doi.org/10.1155/2020/2483187

Carrera, C. S., Solís, S. M., Ferrucci, M. S., Vega, C. C. R., Galati, B. G., Ergo, V., Andrade, F. H., & Lascano, R. H. (2021). Leaf structure and ultrastructure changes induced by heat stress and drought during seed fi lling in field-grown soybean and their relationship with grain yield. Anais da Academia Brasileira de Ciencias, 93(4). https://doi.org/10.1590/0001-3765202120191388

Chen, Y., Zhang, Z., Tao, F., Palosuo, T., & Rötter, R. P. (2017). Field crops research impacts of heat stress on leaf area index and growth duration of winter wheat in the North China Plain. Field Crop Research, 222, 230–237. https://doi.org/10.1016/j.fcr.2017.06.007

Dharmadewi, I. M. (2020). Analisis kandungan klorofil pada beberapa jenis sayuran hijau sebagai alternatif bahan dasar food suplement. Jurnal Emasains, 9(2), 171–176. https://doi.org/10.5281/zenodo.4299383

Du, L., Yang, H., Song, X., Wei, N., Yu, C., Wang, W., & Zhao, Y. (2022). Estimating leaf area index of maize using UAV-based digital imagery and machine learning methods. Scientific Reports, 12, 15937. https://doi.org/10.1038/s41598-022-20299-0

Feng, B., Liu, P., Li, G., Dong, S. T., Wang, F. H., Kong, L. A., & Zhang, J. W. (2014). Effect of heat stress on the photosynthetic characteristicsin flag leaves at the grain-filling stage of differentheat-resistant winter wheat varieties. Journal Agronomy Crop Science, 200(2), 143–155. https://doi.org/10.1111/jac.12045

Guilia S., Berrang, F. L., Zavaleta, C. C., Marshall, L., & Sherilee, L. H. (2020). The effect of climatic factors on nutrients in foods: Evidence froma systematic map. Environmental Research Letters, 15(11), 113002. https://doi.org/10.1088/1748-9326/abafd4

Guirao M. L., Entrambasaguas, L., Ruiz, J. M., & Procaccini, G. (2019). Heat-stress induced flowering can be a potential adaptive response to ocean warming for the iconic seagrass Posidonia oceanica. Molecular Ecology, 28(10), 2486–2501. https://doi.org/10.1111/mec.15089

Guo, T., Gull, S., Ali, M. M., Yousef, A. F., Ercisli, S., Kalaji, H. M., Telesiński, A., Auriga, A., Wróbel, J., Radwan, N. S., & Ghareeb, R. Y. (2022). Heat stress mitigation in tomato (Solanum lycopersicum L.) through foliar application of gibberellic acid. Scientific Report, 12, 11324. https://doi.org/10.1038/s41598-022-15590-z

Handayani, T., Basunanda, P., Murti, H. R., & Sofiari, E. (2013). Pengujian stabilitas membran sel dan kandungan klorofil untuk evaluasi toleransi suhu tinggi pada tanaman kentang. Jurnal Hortikultura, 23(1), 28–35. Retrieved from http://repository.pertanian.go.id/handle/123456789/773

Haworth, M., Marino, G., Brunetti, C., Killi, D., De Carlo, A., & Centritto, M. (2018). The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L.) A case study of the 2017 heat wave. Plants, 7(4), 76. https://doi.org/10.3390/plants7040076

Hidayati, N., & Anas, I. (2016). Photosynthesis and transpiration rates of rice cultivated under the system of rice intensification and the effects on growth and yield. Hayati Journal Bioscience, 23(2), 67–72. https://doi.org/10.1016/j.hjb.2016.06.002

Hoffmann, W. A., & Poorter, H. (2002). Avoiding bias in calculations of relative growth rate. Annals Botany, 90(1), 37–42. https://doi.org/10.1093/aob/mcf140

Hu, S., Ding, Y., & Zhu, C. (2020). Sensitivity and responses of chloroplasts to heat stress in plants heat sensitivity of photosynthesis. Plant Science, 11, 375. https://doi.org/10.3389/fpls.2020.00375

Intergovermental Panen on Climate Change (IPCC). (2021). Climate change 2021. Retrieved from www.ipcc.ch

Intergovermental Panen on Climate Change (IPPC). (2015). Climate change 2014. Retrieved from www.ipcc.ch

Istiqomah, D. (2020). Kandungan total fenolik, flavonoid dan aktivitas antioksidan ekstrak bunga jengger ayam (Celosia cristata L.) [Thesis]. Bogor: IPB University. Retrieved from https://repository.ipb.ac.id/handle/123456789/104896

Jaisyurahman, U., Wirnas, D., Trikoesoemaningtyas, & Purnamawati, H. (2020). Dampak suhu tinggi terhadap pertumbuhan dan hasil tanaman padi. Jurnal Agronomi Indonesia, 47(3), 248–254. https://doi.org/10.24831/jai.v47i3.24892

Liu, Q. H., Wu, X., Li, T., Ma, J. Q., & Zhou, X. B. (2013). Effects of elevated air temperature on physiological characteristics of flag leaves and grain yield in rice. Chilean Journal of Agricultural Research, 73(2), 85–90. https://doi.org/10.4067/S0718-58392013000200001

Marantika, M., Hiariej, A., & Sahertian, D. E. (2021). Kerapatan dan distribusi stomata daun spesies mangrove di Desa Negeri Lama Kota Ambon. Jurnal Ilmu Alam dan Lingkungan, 12(1), 1–6. Retrieved from http://journal.unhas.ac.id/index.php/jai2/article/view/11041

Maulid, R., & Laily, N. A. (2015). Kadar total pigmen klorofil dan senyawa antosianin ekstrak kastuba kadar total pigmen klorofil dan senyawa antosianin ekstrak kastuba (Euphorbia pulcherrima) berdasarkan umur daun. Seminar Nasinal Konservasi dan Pemanfaat Sumber Daya Alam, 1(1), 225–230. Retrieved from https://jurnal.fkip.uns.ac.id/index.php/kpsda/article/view/5379

Mouradov, A., Cremer, F., & Coupland, G. (2002). Control of flowering time: Interacting pathways as a basis for diversity. The Plant Cell, 14(suppl_1), S111–S130. https://doi.org/10.1105/tpc.001362

Obaid, A. Y., Sabir, J. S. M., Atef, A., Liu, X., Edris, S., El-Domyati, F. M., Mutwakil, M. Z., Gadalla, N. O., Hajrah, N. H., Al-Kordy, M. A., Hall, N., Bahieldin, A., & Jansen, R. K. (2016). Analysis of transcriptional response to heat stress in Rhazya stricta. BMC Plant Biology, 16, 252. https://doi.org/10.1186/s12870-016-0938-6

Owokotomo, I. A., & Owokotomo, E. P. (2018). Anti-bacterial and brine shrimps lethality studies of the essential oils of Crassocephalum crepidioides (Benth S. More) grown in south west Nigeria. African Journal of Pure and Applied Chemistry, 12(1), 1–7. https://doi.org/10.5897/ajpac2017.0730

Pothitirat, W., Chomnawang, M. T., Supabphol, R., & Gritsanapan, W. (2009). Comparison of bioactive compounds content, free radical scavenging and anti-acne inducing bacteria activities of extracts from the mangosteen fruit rind at two stages of maturity. Fitoterapia, 80(7), 442–447. https://doi.org/10.1016/j.fitote.2009.06.005

Rossi, S., & Huang, B. (2022). Carotene-enhanced heat tolerance in creeping bentgrass in association with regulation of enzymatic antioxidant metabolism. Journal of the American Society for Horticultural Science, 147(3), 145–151. https://doi.org/10.21273/JASHS05201-22

Sailaja, B., Voleti, S. R., Subrahmanyam, D., Sarla, N., Prasanth, V. V., Bhadana, V. P., & Mangrauthia, S. K. (2014). Prediction and expression analysis of miRNAs associated with heat stress in Oryza sativa. Rice Science, 21(1), 3–12. https://doi.org/10.1016/S1672-6308(13)60164-X

Santrum, M. J., Tokan, M. K., & Imakulata, M. M. (2021). Estimasi indeks luas daun dan fotosintesis bersih kanopi hutan mangrove di Pantai Salupu Kecamatan Kupang Barat Kabupaten Kupang. Haumeni Journal of Education, 1(2), 38–43. Retrieved from https://ejurnal.undana.ac.id/index.php/haumeni/article/view/5402

Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sense Environment, 81(2–3), 337–354. https://doi.org/10.1016/S0034-4257(02)00010-X

Slimen, I. B., Najar, T., Ghram, A., Dabbebi, H., Mrad, M. B., & Abdrabbah, M. (2014). Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. International Journal of Hyperthermia, 30(7), 513–523. https://doi.org/10.3109/02656736.2014.971446

Subira, M. M., Romero, M. P., Moralejo, M., Macia, A., Puig, E., Savin, R., & Romagosa, I. (2021). Post-anthesis thermal stress induces differential accumulation of bioactive compounds in field-grown barley. Journal of the Science of Food and Agriculture, 101(15), 6496–6504. https://doi.org/10.1002/jsfa.11321

Suraweera, D. D., Groom, T., & Nicolas, M. E. (2020). Exposure to heat stress during flowering period reduces flower yield and pyrethrins in Pyrethrum (Tanacetum cinerariifolium). Journal of Agronomy and Crop Science, 206(5), 565–578. https://doi.org/10.1111/jac.12405

Tanimonure, V. A., & Naziri, D. (2021). Impact of climate adaptation strategies on the net farm revenue of underutilized indigenous vegetables’ (UIVs) production in Southwest Nigeria. Resources, Environment and Sustainability, 5, 100029. https://doi.org/10.1016/j.resenv.2021.100029

Tomimori, K., Nakama, S., Kimura, R., Tamaki, K., Ishikawa, C., & Mori, N. (2012). Antitumor activity and macrophage nitric oxide producing action of medicinal herb Crassocephalum crepidioides. BMC Complementary Medicine and Therapies, 12, 8. https://doi.org/10.1186/1472-6882-12-78

Tsoy, O., & Mushegian, A. (2022). Florigen and its homologs of FT/CETS/PEBP/RKIP/YbhB family may be the enzymes of small molecule metabolism: review of the evidence. BMC Plant Biology, 22, 56. https://doi.org/10.1186/s12870-022-03432-z

Verma, D., Aghora, T. S., Laxman, R. H., & Dhananjaya, M. V. (2019). Effect of heat stress on growth indices in garden pea (Pisum sativum var. hortense). International Journal of Chemical Studies, 7(6), 1839–1841. Retrieved from https://www.chemijournal.com/archives/?year=2019&vol=7&issue=6&ArticleId=7917&si=false

Vongsak, B., Pongtip, S., Supachoke, M., Suchitra, T., Yuvadee, W., & Wandee, G. (2013). Maximizing total phenolics, total flavonoids content and antioxidant of Moringa oleifera leaf extract by the appropriate extraction method. Industrial crops and products, 44, 566–571. https://doi.org/10.1016/j.indcrop.2012.09.021

Wang, Q., Chen, J., He, N., & Guo, F. (2018). Metabolic reprogramming in chloroplasts under heat stress in plants. International Journal of Molecular Sciences, 19(3), 849. https://doi.org/10.3390/ijms19030849

Waraich, E. A., Hussain, A., Ahmad, Z., Ahmad, M., & Barutcular, C. (2021). Foliar application of sulfur improved growth, yield and physiological attributes of canola (Brassica napus L.) under heat stress conditions. Journal of Plant Nutrition, 45(3), 369–379. https://doi.org/10.1080/01904167.2021.1985138

Xu, Y. Y., Wang, J., Nie, S. S., Huang, D. Q., Wang, Y., Xu, L., Wang, R. H., Luo, X. B., & Liu, L. W. (2016). Isolation and molecular characterization of the FLOWERING LOCUS C gene promoter sequence in radish (Raphanus sativus L.). Journal Integrative Agriculture, 15(4), 763–774. https://doi.org/10.1016/S2095-3119(15)61295-3

Zaripheh, S., & Erdman J. W. (2002). Factors that influence the bioavailablity of xanthophylls. Journal of Nutrition, 132(3), 531S–534S. https://doi.org/10.1093/jn/132.3.531S

Refbacks

  • There are currently no refbacks.