Overcoming Major Environmental and Production Challenges in Cattle Owned by Smallholder Farmers in the Tropics

Heather M. Burrow


The world’s population is expected to increase significantly by 2050, leading to significantly increased demands for meat and dairy products. However, cattle are major emitters of greenhouse gases that speed up climate change. To achieve food security by 2050, livestock enterprises need to double their outputs from constant resources, in the face of increased competition for inputs such as land, water, grain and labour. To cope with climate change, the livestock need to be productive under hotter and drier climates and be able to tolerate increased challenges from parasites and vector-borne diseases. The best way for smallholder cattle farmers in tropical low-medium income countries to overcome these multiple challenges is to focus on improving the productivity of their herds. This paper discusses a range of simple and cost-effective options already available to smallholder farmers to significantly improve the productivity and profitability of their herds and by doing so, they will indirectly reduce greenhouse gas emissions from their cattle and improve the natural resource base on which their cattle graze. Improved herd productivity will in turn deliver significant social, environmental, economic and livelihood benefits to the smallholder farmers themselves and the communities and value chains in which they operate.


beef and dairy cattle; improved productivity; methane emissions; tropical environments

Full Text:



Al Kalaldeh, M., Swaminathan, M., Gaudare, Y., Joshi, S., Aliloo, H., Strucken, E. M., Ducrocq, V., & Gibson, J. P. (2021). Genomic evaluation of milk yield in a smallholder crossbred dairy production system in India. Genetics, Selection, Evolution, 53, 73. https://doi.org/10.1186/s12711-021-00667-6

Bhuiyan, M. S. A., Bhuiyan, A. K. F. H., Lee, J. H., & Lee, S. H. (2017). Community based livestock breeding programs in Bangladesh: Present status and challenges. Journal of Animal Breeding and Genomics, 1(2), 77–84. https://doi.org/10.12972/jabng.20170009

Burrow, H. (2019). Strategies for increasing beef cattle production under dryland farming systems. WARTAZOA: Indonesian Bulletin of Animal and Veterinary Sciences, 29(4), 161–170. https://doi.org/10.14334/wartazoa.v29i4.2452

Burrow, H. M. (2006). Utilization of diverse breed resources for tropical beef production. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brasil. Retrieved from https://scholar.google.co.id/scholar?cluster=17900599203617553000&hl=id&as_sdt=2005&sciodt=0,5

Burrow, H. M. (2015). Genetic aspects of cattle adaptation in the tropics. In D. J. Garrick & A. Ruvinsky (Eds.), The Genetics of cattle. CAB International. Retrieved from https://rune.une.edu.au/web/handle/1959.11/17403

Burrow, H. M. (2021). Opportunities and challenges to increasing productivity in cattle farmed by smallholders in Asia and Africa. Proceeding of International Seminar on Livestock Production and Veterinary Technology¸ 2021, 3–20. https://dx.doi.org/10.14334/Proc.Intsem.LPVT-2021-p.1

Burrow, H. M., Moore, S. S., Johnston, D. J., Barendse, W., & Bindon, B. M. (2001). Quantitative and molecular genetic influences on properties of beef: A review. Australian Journal of Experimental Agriculture, 41(7), 893–919. https://doi.org/10.1071/EA00015

Burrow, H. M., Mrode, R., Mwai, A. O., Coffey, M. P., & Hayes, B. J. (2021). Challenges and opportunities in applying genomic selection to ruminants owned by smallholder farmers. Agriculture, 11(11), 1172. https://doi.org/10.3390/agriculture11111172

Capper, J. L., Cady, R. A., & Bauman, D. E. (2009). The environmental impact of dairy production: 1944 compared with 2007. Journal of Animal Science, 87(6), 2160–2167. https://doi.org/10.2527/jas.2009-1781

Cardoso, F. F., Matika, O., Djikeng, A., Mapholi, N., Burrow, H. M., Yokoo, M. J. I., Campos, G. S., Gulias-Gomes, C. C., Riggio, V., Pong-Wong, R., Engle, B., Porto-Neto, L., Maiwashe, A., & Hayes, B. J. (2021). Multiple country and breed genomic prediction of tick resistance in beef cattle. Frontiers in Immunology, 12, 2189. https://doi.org/10.3389/fimmu.2021.620847

Chang, J., Peng, S., Yin, Y., Ciais, P., Havlik, P., & Herrero, M. (2021). The key role of production efficiency changes in livestock methane emission mitigation. AGU Advances, 2(2), e2021AV000391. https://doi.org/10.1029/2021av000391

Copland, J. (1996). Bali cattle: Origins in Indonesia. In G. E. Wilcox, S. S, D. M. N. Dharma, & J. W. Copland (Eds.), Proceedings Jembrana disease and the Bovine Lentiviruses, Proceedings of a workshop pp. 29–33. Retrieved from https://www.aciar.gov.au/publication/technical-publications/jembrana-disease-and-bovine-lentiviruses

Dahlanuddin, Ningsih, B. S., Poppi, D. P., Anderson, S. T., & Quigley, S. P. (2014). Long-term growth of male and female Bali cattle fed Sesbania grandiflora. Animal Production Science, 54(10), 1615–1619. https://doi.org/10.1071/AN14357

Dahlanuddin, Yanuarianto, O., Poppi, D. P., McLennan, S. R., & Quigley, S. P. (2014). Liveweight gain and feed intake of weaned Bali cattle fed grass and tree legumes in West Nusa Tenggara, Indonesia. Animal Production Science, 54(7), 915–921. https://doi.org/10.1071/AN13276

Dahlanuddin, Yuliana, B. T., Panjaitan, T., Halliday, M. J., Van De Fliert, E., & Shelton, H. M. (2014). Survey of Bali bull fattening practices in Central Lombok, Eastern Indonesia, based on feeding of Sesbania grandiflora. Animal Production Science, 54(9), 1273–1277. https://doi.org/10.1071/AN14325

Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S., & Courbois, C. (2001). Livestock to 2020: The next food revolution. Outlook on Agriculture, 30(1), 27–29. https://doi.org/10.5367/000000001101293427

Devendra, C. (1987). Goats. In H. D. Johnson (Ed.), World animal science B5. Disciplinary approach, bioclimatology and adaptation of livestock pp. 157–168. Elsevier. Retrieved from https://scholar.google.co.id/scholar?cluster=8488194368331368768&hl=id&as_sdt=2005&sciodt=0,5

FutureBeef. (2019). Nutrient requirements of beef cattle. Retrieved from https://futurebeef.com.au/knowledge-centre/nutrient-requirements/

Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations (FAO). Retrieved from https://www.fao.org/3/i3437e/i3437e.pdf

Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B. K., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G. K., & Wilmoth, J. (2014). World population stabilization unlikely this century. Science, 346(6206), 234–237. https://doi.org/10.1126/science.1257469

Haile, A., Gizaw, S., Getachew, T., Mueller, J. P., Amer, P., Rekik, M., & Rischkowsky, B. (2019). Community-based breeding programmes are a viable solution for Ethiopian small ruminant genetic improvement but require public and private investments. Journal of Animal Breeding and Genetics, 136(5), 319–328. https://doi.org/10.1111/jbg.12401

Haile, A., Getachew, T., Mirkena, T., Duguma, G., Gizaw, S., Wurzinger, M., Sölkner, J., Mwai, O., Dessie, T., Abebe, A., Abate, Z., Jembere, T., Rekik, M., Lobo, R. N. B., Mwacharo, J. M., Terfa, Z. G., Kassie, G. T., Mueller, J. P., & Rischkowsky, B. (2020). Community-based sheep breeding programs generated substantial genetic gains and socioeconomic benefits. Animal, 14(7), 1362–1370. https://doi.org/10.1017/S1751731120000269

Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., Blümmel, M., Weiss, F., Grace, D., & Obersteiner, M. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences of the United States of America, 110(52), 20888–20893. https://doi.org/10.1073/pnas.1308149110

Hodges, J., & Payne, W. J. A. (1997). Tropical cattle: Origin, breeding and breeding policies. Blackwell Science. Retrieved from https://scholar.google.co.id/scholar?cluster=4721960224218261537&hl=id&as_sdt=2005&sciodt=0,5

Howden, S. M., & Reyenga, P. J. (1999). Methane emissions from Australian livestock: implications of the Kyoto Protocol. Australian Journal of Agricultural Research, 50(8), 1285–1292. https://doi.org/10.1071/AR99002

Hughes, L. (2003). Climate change and Australia: Trends, projections and impacts. Austral Ecology, 28(4), 423–443. https://doi.org/10.1046/j.1442-9993.2003.01300.x

Hurst, P., Termine, P., & Karl, M. (2015). Agricultural workers and their contribution to sustainable agriculture. FAO-ILO-IUF Report, FAO. Retrieved from https://scholar.google.co.id/scholar?cluster=2040448697390871804&hl=id&as_sdt=2005&sciodt=0,5

Jellinek, P., Avenell, K., Thahar, A., & Sitorus, P. (1980). Infertility associated with cross breeding of Bali cattle. In Laporan Seminar Ruminansia II. Bogor (Indonesia): Balai Penelitian Ternak. Retrieved from https://scholar.google.co.id/scholar?cluster=7791755549263853626&hl=id&as_sdt=2005&sciodt=0,5

Karnauh, A. B., Dunga, G., & Rewe, T. (2018). Community based breeding program for improve goat production in Liberia. MOJ Current Research and Reviews, 1(5), 216–221. https://doi.org/10.15406/mojcrr.2018.01.00036

Marshall, K., Gibson, J. P., Mwai, O., Mwacharo, J. M., Hailem, A., Getachew, T., Mrode, R., & Kemp, S. J. (2019). Livestock genomics for developing countries – African examples in practice. Frontiers in Genetics, 10, 297. https://doi.org/10.3389/fgene.2019.00297

Mrode, R., Ojango, J. M. K., Okeyo, A. M., & Mwacharo, J. M. (2019). Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: Current status and future prospects. Frontiers in Genetics, 9, 694. https://doi.org/10.3389/fgene.2018.00694

Mrode, R., Ojango, J., Ekine-Dzivenu, C., Aliloo, H., Gibson, J., & Okeyo, M. A. (2021). Genomic prediction of crossbred dairy cattle in Tanzania: a route to productivity gains in smallholder dairy systems. Journal of Dairy Science, 104(11), 11779-11789. https://doi.org/10.3168/jds.2020-20052

Mueller, J. P., Rischkowsky, B., Haile, A., Philipsson, J., Mwai, O., Besbes, B., Valle Zárate, A., Tibbo, M., Mirkena, T., Duguma, G., Sölkner, J., & Wurzinger, M. (2015). Community-based livestock breeding programmes: essentials and examples. Journal of Animal Breeding and Genetics, 132(2), 155–168. https://doi.org/10.1111/jbg.12136

Mullen, J., & Keogh, M. (2013). The future productivity and competitiveness challenge for Australian agriculture. Australian Agricultural and Resource Economics Society (AARES), 5–24. http://dx.doi.org/10.22004/ag.econ.152170

Nutrition EDGE. (2019). Nutrient requirement tables for nutrition EDGE Manual. Retrieved from https://www.mla.com.au/research-and-development/reports/2015/nutrient-requirements-tables-for-nutrition-edge-manuals/

Ojango, J. M. K., Mrode, R., Rege, J. E. O., Mujibi, D., Strucken, E. M., Gibson, J., & Mwai, A. (2019). Genetic evaluation of test-day milk yields from smallholder dairy production systems in Kenya using genomic relationships. Journal of Dairy Science, 102(6), 5266–5278. https://doi.org/10.3168/jds.2018-15807

Prayaga, K. C., Henshall, J. M., & Burrow, H. M. (2003). Optimisation of breed proportions in tropically adapted beef composites based on growth and resistance traits. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 15, 302–305. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=

Pulina, G., Francesconi, A. H. D., Stefanon, B., Sevi, A., Calamari, L., Lacetera, N., Dell’Orto, V., Pilla, F., Marsan, P. A., Mele, M., Rossi, F., Bertoni, G., Crovetto, G. M., & Ronchi, B. (2017). Sustainable ruminant production to help feed the planet. Italian Journal of Animal Science, 16(1), 140–171. https://doi.org/10.1080/1828051X.2016.1260500

Quigley, S. P., Dahlanuddin, Marsetyo, Pamungkas, D., Priyanti, A., Saili, T., Mclennan, S. R., & Poppi, D. P. (2014). Metabolisable energy requirements for maintenance and gain of liveweight of Bali cattle (Bos javanicus). Animal Production Science, 54(9), 1311–1316. https://doi.org/10.1071/AN14355

Smith, J., Sones, K., Grace, D., MacMillan, S., Tarawali, S., & Herrero, M. (2013). Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Animal Frontiers, 3(1), 6–13. https://doi.org/10.2527/af.2013-0002UN Nutrition. (2021). Livestock-derived foods and sustainable healthy diets - Discussion paper. Retrieved from https://www.tabledebates.org/research-library/livestock-derived-foods-and-sustainable-healthy-diet


  • There are currently no refbacks.