Carbon Stock Estimates due to Land Cover Changes at Sumber Brantas Sub-Watershed, East Java

Rossyda Priyadarshini, Amir Hamzah, Bakti Wisnu Widjajani

Abstract

Carbon stock is one of the essential types of ecosystem services that are provided by vegetation. Land use has significant effects both directly and indirectly on vegetation cover and strongly influences the carbon stock within the ecosystem. In this study, we have investigated the effect of land cover changes on the carbon stocks at the sub-watershed of Sumber Brantas, Batu city, East Java. This research was conducted at the Junrejo, Batu and Bumiaji districts of Batu city. Land cover classes were determined from satellite imagery. The carbon stock was measured at plot and landscape level using RaCSA. The results showed that forest conversion into plantation forest (pine, Teak, Albizia chinensis, Anthocephalus cadamba) or agricultural land caused losses of the above-ground C-stock of ~50 Mg ha-1, while losses of the underground C-stock were ~20 Mg ha-1. Tree biomass contributes about 60% of the C-stock on average, while the understorey and necromass contribute C-stock about 2% and 5%, respectively. Mixed forest has a total C-stock as much as 316.64 Mg ha-1, followed by plantation forest (247.19 Mg ha-1), farmland and scrubland i.e. 51.57 Mg ha-1 and 12 Mg ha-1,respectively. As the consequences of forest conversion into cropland (2008~2012), the Sumber Brantas sub-watershed (139,447 ha) has been lost its C-stock as much as 0.83 Mg ha-1 yr-1, equivalent to 3.04 Mg CO2 ha-1 yr-1. This study showed that C-stock will be maintained by managing and planting woody plant which has high tree biomass.

Keywords

carbon stock; forest conversion; land cover; Sumber Brantas sub-watershed

Full Text:

PDF

References

Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., & Sparks, D. L. (2015). Soil and human security in the 21st century. Science, 348(6235), 2500–2505. Crossref

Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use land cover classification system for use with remote sensing data: a revision of the land use classification system. Professional Paper. Crossref

Arevalo, C. B. M., Bhatti, J. S., Chang, S. X., & Sidders, D. (2009). Ecosystem carbon stocks and distribution under different land-uses in north central Alberta, Canada. Forest Ecology and Management, 257(8), 1776–1785. Crossref

Arifin, J. (2001). Estimasi Cadangan Karbon pada Berbagai Sistem Penggunaan Lahan di Kecamatan Ngantang, Malang. Universitas Brawijaya.

Bruijnzeel, L. A., Scatena, F. N., & Hamilton, L. S. (2011). Tropical montane cloud forests: Science for conservation and management. Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge: Cambridge University Press. Crossref

Chen, X. (2006). Tree Diversity, Carbon Storage, and Soil Nutrient in an Old‐Growth Forest at Changbai Mountain, Northeast China. Communications in Soil Science and Plant Analysis, 37(3–4), 363–375. Crossref

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., … Thornton, P. (2013). Carbon and Other Biogeochemical Cycles. In: Cli-mate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor. Cambridge, United Kingdom and New York, NY, USA. Retrieved from Link

Coutinho, H. L. C., Noellemeyer, E., Balieiro, F. de C., Piñeiro, G., Fidalgo, E. C. C., Martius, C., & Silva, C. F. da. (2015). Impacts of land-use change on carbon stocks and dynamics in central-southern South American biomes: Cerrado, Atlantic Forest and Southern Grasslands. In Soil carbon: science, management and policy for multiple benefits (pp. 243–264). Wallingford: CABI. Crossref

Deng, L., Zhu, G. yu, Tang, Z. sheng, & Shangguan, Z. ping. (2016). Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 5, 127–138. Crossref

Gnanavelrajah, N., Shrestha, R. P., Schmidt-Vogt, D., & Samarakoon, L. (2008). Carbon stock assessment and soil carbon management in agricultural land-uses in Thailand. Land Degradation and Development, 19(3), 242–256. Crossref

Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 8(4), 345–360. Crossref

Haghdoost, N., Akbarinia, M., & Hosseini, S. M. (2013). Land-use change and carbon stocks: A case study, Noor County, Iran. Journal of Forestry Research, 24(3), 461–469. Crossref

Hairiah, K., Dewi, S., Agus, F., van Noordwijk, M., & Rahayu, S. (2011). Measuring Carbon Stocks Across Land Use Systems: A Manual. Bogor: World Agroforestry Centre (ICRAF), SEA Regional Office. Retrieved from Link

Hairiah, K., & Murdiyarso, D. (2007). Alih Guna Lahan Dan Neraca Karbon Terestrial. Bogor: World Agroforestry Centre (ICRAF) Southeast Asia Regional Office. Retrieved from Link

Hairiah, K., & Rahayu, S. (2007). Pengukuran ‘Karbon Tersimpan’ di berbagai Macam Penggunaan Lahan. Bogor: Bogor: World Agroforestry Centre-ICRAF, Southeast Asia Regional Office. Retrieved from Link

Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R. S., Hansen, M. C., … Ramankutty, N. (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9(12), 5125–5142. Crossref

IPCC. (2007). Summary for Policymakers. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)]. Cambridge, United Kingdom and New York, NY, USA. Retrieved from Link

Ketterings, Q. M., Coe, R., Van Noordwijk, M., Ambagau’, Y., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146(1–3), 199–209. Crossref

Lasco, R. D., & Pulhin, F. B. (2009). Carbon Budgets of Forest Ecosystems in the Philippines. Journal of Environmental Science and Management, 12(1), 1–13. Retrieved from Link

Lewis, T., Smith, T. E., Hogg, B., Swift, S., Verstraten, L., Bryant, P., … Dalal, R. C. (2016). Conversion of sub-tropical native vegetation to introduced conifer forest: Impacts on below-ground and above-ground carbon pools. Forest Ecology and Management, 370, 65–75. Crossref

Muchura, Henry, M., Min, S., Chua, Mworia, John, K., & Gichuki, N. N. (2014). Role of Bryophytes And Tree Canopy In Mist Trapping In Mt. Marsabit Forest. Journal of Environment and Earth Science, 4(21), 128–138. Retrieved from Link

Muhati, G. L., Olago, D., & Olaka, L. (2018). Quantification of carbon stocks in Mount Marsabit Forest Reserve, a sub-humid montane forest in northern Kenya under anthropogenic disturbance. Global Ecology and Conservation, 14, e00383. Crossref

Muriuki, G., Seabrook, L., McAlpine, C., Jacobson, C., Price, B., & Baxter, G. (2011). Land cover change under unplanned human settlements: A study of the Chyulu Hills squatters, Kenya. Landscape and Urban Planning, 99(2), 154–165. Crossref

Omoro, L. M. A., Starr, M., & Pellikka, P. K. E. (2013). Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya. Silva Fennica, 47(2), 1–18. Crossref

Ostle, N. J., Levy, P. E., Evans, C. D., & Smith, P. (2009). UK land use and soil carbon sequestration. Land Use Policy, 26, S274–S283. Crossref

Ovando, P., & Caparrós, A. (2009). Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives. Energy Policy, 37(3), 992–1003. Crossref

Pellikka, P. K. E., Heikinheimo, V., Hietanen, J., Schäfer, E., Siljander, M., & Heiskanen, J. (2018). Impact of land cover change on aboveground carbon stocks in Afromontane landscape in Kenya. Applied Geography, 94, 178–189. Crossref

Rhoades, C. C. (1996). Single-tree influences on soil properties in agroforestry: lessons from natural forest and savanna ecosystems. Agroforestry Systems, 35(1), 71–94. Crossref

Richards, A. E., Dalal, R. C., & Schmidt, S. (2007). Soil carbon turnover and sequestration in native subtropical tree plantations. Soil Biology and Biochemistry, 39(8), 2078–2090. Crossref

Rittl, T. F., Oliveira, D., & Cerri, C. E. P. (2017). Soil carbon stock changes under different land uses in the Amazon. Geoderma Regional, 10, 138–143. Crossref

Salinger, M. J. (2007). Agriculture’s influence on climate during the Holocene. Agricultural and Forest Meteorology, 142(2–4), 96–102. Crossref

Singh, B. R., & Lal, R. (2005). The potential of soil carbon sequestration through improved management practices in Norway. Environment, Development and Sustainability, 7(1), 161–184. Crossref

Solomon, N., Pabi, O., Annang, T., Asante, I. K., & Birhane, E. (2018). The effects of land cover change on carbon stock dynamics in a dry Afromontane forest in northern Ethiopia. Carbon Balance and Management, 13(1), 14. Crossref

Tomlinso, R. W. (2006). CLIMATE CHANGE – Land Use, Land-Use Change and Carbon Stocks (2000-LS-5.1.2a-M1)Synthesis Report. Johnstown Castle. Retrieved from Link

van Noordwijk, M., Rahayu, S., Hairiah, K., Wulan, Y. C., Farida, A., & Verbist, B. (2002). Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): from allometric equations to land use change analysis. SCIENCE IN CHINA (Series C), 45, 75–86. Retrieved from Link

Wang, W., Lei, X., Ma, Z., Kneeshaw, D. D., & Peng, C. (2011). Positive Relationship between Aboveground Carbon Stocks and Structural Diversity in Spruce-Dominated Forest Stands in New Brunswick, Canada. Forest Science, 57(6), 506–515. Crossref

Zomer, R. J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., … Wang, M. (2016). Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 6(1), 29987. Crossref

Refbacks

  • There are currently no refbacks.