Forest-Derived Actinomycetes from Indonesian National Parks: A Novel Approach for Bacterial Leaf Blight Control in Rice
Abstract
The potential of forest-derived actinomycetes from Indonesian national parks for managing bacterial leaf blight (BLB) remains largely unexplored. This study aimed to evaluate the biocontrol potential of forest-derived actinomycetes from Kutai National Park against Xanthomonas oryzae pv. oryzae and to assess their ability to promote rice seed germination, seedling vigor, and root colonization. A total of 12 actinomycete isolates were screened for in vitro antagonism against Xoo race 8. Further investigation in planta revealed that 3 isolates (KrK1K1, DrK1T20, and DrK1T21) significantly reduced disease severity by 77.77%, 86.74%, and 82.85%, respectively. Molecular identification of the 3 potential isolates revealed that KrK1K1, DrK1T20, and DrK1T21 are identified as Streptomyces parvulus, Tsukamurella tyrosinosolvens, and Salinispora tropica, respectively. Three selected isolates also significantly (p < 0.05) enhanced the seed germination rate (25.05%) and the vigor index (51.11%). Filtrate bioassays at 5%, 10%, and 15% concentrations demonstrated that only T. tyrosinosolvens DrK1T20 effectively inhibited Xoo growth. All 3 isolates produced siderophores and chitinase, whereas phosphate-solubilizing activity was detected only in S. parvulus. Scanning electron microscopy confirmed effective colonization of rice roots by actinomycetes, indicating a successful interaction between the roots and the actinomycete isolates. These abilities strongly support the potential of forest-derived actinomycetes to control BLB and improve plant growth in the field.
Keywords
Full Text:
PDFReferences
Abd-Elsalam, K. A., Aly, I. N., Abdel-Satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 82–85. https://doi.org/10.5897/ajb2003.000-1016
Abedinzadeh, M., Etesami, H., & Alikhani, H. A. (2019). Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnology Reports, 21, e00305. https://doi.org/10.1016/j.btre.2019.e00305
Adachi, N., Tsukamoto, S., Inoue, Y., & Azegami, K. (2012). Control of bacterial seedling rot and seedling blight of rice by bacteriophage. Plant Disease, 96(7), 1033–1036. https://doi.org/10.1094/PDIS-03-11-0232-RE
Ahmad, F., Ali, F., Alsayegh, A. A., Alshahrani, A. M., Muzammil, K., Ali, A., … & Hussain, S. (2024). Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon, 10(7), e29128. https://doi.org/10.1016/j.heliyon.2024.e29128
Amin, T., Gupta, V., Sharma, A., Rai, P. K., Razdan, V. K., Sharma, S. K., ... & Gupta, S. K. (2023). Distribution of Xanthomonas oryzae pv. oryzae pathotypes in basmati-rice-growing areas of Jammu and Kashmir, India. Agronomy, 13(3), 713. https://doi.org/10.3390/agronomy13030713
Ashwini, S., Prashanthi, S. K., Krishnaraj, P. U., Iliger, K. S., & Kolur, S. M. (2023). Biological management of bacterial leaf blight of rice (Xanthomonas oryzae pv. oryzae) through rice rhizosphere antagonist actinobacteria. International Journal of Environment and Climate Change, 13(7), 660–673. https://doi.org/10.9734/ijecc/2023/v13i71918
Balakrishna, G. B. (2012). Isolation of phosphate solibulizing actinomycetes from forest soils of Mahabubnagar District. IOSR Journal of Pharmacy (IOSRPHR), 2(2), 271–275. https://doi.org/10.9790/3013-0220271275
Beal, J., Farny, N. G., Haddock-Angelli, T., Selvarajah, V., Baldwin, G. S., Buckley-Taylor, R., … & Workman, C. T. (2020). Robust estimation of bacterial cell count from optical density. Communications Biology, 3(1), 512. https://doi.org/10.1038/s42003-020-01127-5
Chanthasena, P., & Nantapong, N. (2016). Biodiversity of antimicrobial-producing actinomycetes strains isolated from dry dipterocarp forest soil in Northeast Thailand. Brazilian Archives of Biology and Technology, 59, e16150674. https://doi.org/10.1590/1678-4324-2016150674
Charousová, I., Medo, J., Halenárová, E., & Javoreková, S. (2017). Antimicrobial and enzymatic activity of actinomycetes isolated from soils of coastal islands. Journal of Advanced Pharmaceutical Technology and Research, 8(2), 46–51. https://doi.org/10.4103/japtr.JAPTR-161-16
Chaudhary, H. S., Soni, B., Shrivastava, A. R., & Shrivastava, S. (2013). Diversity and versatility of actinomycetes and its role in antibiotic production. Journal of Applied Pharmaceutical Science, 3(8), S83–S94. https://doi.org/10.7324/JAPS.2013.38.S14
Cooke, B. M. (2006). Disease assessment and yield loss. The epidemiology of plant diseases (pp. 43–80). Dordrecht: Springer Netherlands. https://doi.org/10.1007/1-4020-4581-6
Dar, M. S., & Ahmad, I. (2025). Screening and evaluation of antibacterial active strains of actinomycetes isolated from Northern Indian soil for biofilm inhibition against selected ESKAPE pathogens. Journal of Umm Al-Qura University for Applied Sciences, 11(2), 340–355. https://doi.org/10.1007/s43994-024-00164-8
Díaz-Díaz, M., Bernal-Cabrera, A., Trapero, A., Medina-Marrero, R., Sifontes-Rodríguez, S., Cupull-Santana, R. D., ... & Agustí-Brisach, C. (2022). Characterization of actinobacterial strains as potential biocontrol agents against Macrophomina phaseolina and Rhizoctonia solani, the main soil-borne pathogens of Phaseolus vulgaris in Cuba. Plants, 11(5), 645. https://doi.org/10.3390/plants11050645
Din, A. R. J. M., Hanapi, S. Z., Supari, N., Alam, S. A. Z., Javed, M. A., Tin, L. C., & Sarmidi, M. R. (2014). Germination, seedling growth, amylase and protease activities in Malaysian upland rice seed under microbial inoculation condition. Journal of Pure and Applied Microbiology, 8(4), 2627–2635. Retrieved from https://microbiologyjournal.org/germination-seedling-growth-amylase-and-protease-activities-in-malaysian-upland-rice-seed-under-microbial-inoculation-condition/
Djebaili, R., Pellegrini, M., Bernardi, M., Smati, M., Kitouni, M., & Gallo, M. D. (2021). Biocontrol activity of actinomycetes strains against fungal and bacterial pathogens of Solanum lycopersicum L. and Daucus carota L.: in vitro and in planta antagonistic activity. Biology and Life Sciences Forum, 4(1), 27. https://doi.org/10.3390/IECPS2020-08863
Ezrari, S., Mhidra, O., Radouane, N., Tahiri, A., Polizzi, G., Lazraq, A., & Lahlali, R. (2021). Potential role of rhizobacteria isolated from citrus rhizosphere for biological control of citrus dry root rot. Plants, 10(5), 872. https://doi.org/10.3390/plants10050872
Emmyrafedziawati, A. K. R., Stella, M., Emmyrafedziawati, A., Kamal, R., & Matthews, S. (2015). Hydrolysis of carboxymethyl cellulose (CMC) by Bacillus isolated from compost. Journal of Tropical Agriculture and Food Science, 43(2), 129–135. Retrieved from https://www.cabidigitallibrary.org/doi/pdf/10.5555/20163079301
Fernandez, R., Ramachandran, R., & Nallakumar, K. (2018). Screening and characterization of protease producing marine actinobacteria Streptomyces pactum RA71 isolated from Pulicat lake, Chennai, Tamil Nadu, India. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 20(2), 618–625. Retrieved from https://www.envirobiotechjournals.com/issues/article_abstract.php?aid=8726&iid=250&jid=1
Figaj, D., Ambroziak, P., Przepiora, T., & Skorko-glonek, J. (2019). The role of proteases in the virulence of plant pathogenic bacteria. Molecular Sciences, 20(3), 672. https://doi.org/10.3390/ijms20030672
Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series, 41(41), 95–98. Retrieved from https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=BioEdit%3A+a+user-friendly+biological+sequence+alignment+editor+and+analysis+program+for+Windows+95%2F98%2FNT&btnG=
Hamdi, C., Arous, F., Boudagga, S., Harrath, N., Nwodo, U., & Jaouani, A. (2023). Actinobacteria isolated from Tunisian forest soils show high diversity and biotechnological potential. Biologia, 78(12), 3653–3665. https://doi.org/10.1007/s11756-023-01515-2
Han, L., Zhang, G., Miao, G., Zhang, X., & Feng, J. (2015). Streptomyces kanasensis sp. nov., an antiviral glycoprotein producing actinomycete isolated from forest soil around Kanas Lake of China. Current Microbiology, 71(6), 627–631. https://doi.org/10.1007/s00284-015-0900-0
Hassani, F., Zare, L., & Khaledi, N. (2019). Evaluation of germination and vigor indices associated with Fusarium-infected seeds in pre-basic seeds wheat fields. Journal of Plant Protection Research, 59(1), 69–85. https://doi.org/10.24425/jppr.2019.126037
Hata, E. M., Sijam, K., Ahmad, Z. A. M., Yusof, M. T., & Azman, N. A. (2015). In vitro antimicrobial assay of actinomycetes in rice against Xanthomonas oryzae pv. oryzicola and as potential plant growth promoter. Brazilian Archives of Biology and Technology, 58(6), 821–832. http://dx.doi.org/10.1590/S1516-89132015060263
Ilsan, N. A., Nawangsih, A. A., & Wahyudi, A. T. (2016). Rice phyllosphere actinomycetes as biocontrol agent of bacterial leaf blight disease on rice. Asian Journal of Plant Pathology, 10(2), 1–8. https://doi.org/10.3923/ajppaj.2016.1.8
Irpawa, D. M. I., Arwiyanto, T., & Sulandari, S. (2024). The characterization, pathotype distribution and genetic diversity of Xanthomonas oryzae pv. oryzae in rice production centers of the Special Region of Yogyakarta, Indonesia. Journal of Tropical Plant Pests and Diseases, 24(2), 266–277. https://doi.org/10.23960/jhptt.224266-277
IRRI. (2014). Standard evaluation system for rice (SES). International Rice Research Institute. Retrieved from http://www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-system.pdf
Jaber, M. A., & Fayyadh, M. A. (2019). Biological control of charcoal rot disease caused by Macrophomina phaseolina (Tassi) goid on cowpea and mung bean by some isolates of Streptomyces spp. Basrah Journal of Agricultural Sciences, 32, 207–219. https://doi.org/10.37077/25200860.2019.269
Jain, S., Gupta, I., Walia, P., & Swami, S. (2016). Application of actinobacteria in agriculture, nanotechnology, and bioremediation. Actinobacteria-Diversity, Applications and Medical Aspects, 11(13), 151. http://doi.org/10.5772/intechopen.104385
Jiang, B., Long, C., Xu, Y., & Han, L. (2023). Molecular mechanism of Tsukamurella tyrosinosolvens strain P9 in response to root exudates of peanut. Archives of Microbiology, 205(1), 48. https://doi.org/10.1007/s00203-022-03387-7
Joshi. (2018). Role of enzymes in seed germination. International Journal of Creative Research Thoughts, 6(2), 1481–1485. Retrieved from https://www.ijcrt.org/papers/IJCRT1812620.pdf
Kadaikunnan, S., Alharbi, N. S., Khaled, J. M., & Alobaidi, A. S. (2023). Biocontrol property of Streptomyces parvulus VRR3 in green gram plant (Vigna radiata L.) against Fusarium solani in greenhouse. Physiological and Molecular Plant Pathology, 128, 102128. https://doi.org/10.1016/j.pmpp.2023.102128
Khaeruni, A., Rahim, A., Syair, S., & Adriani, A. (2014). Induksi ketahanan terhadap penyakit hawar daun bakteri pada tanaman padi di lapangan menggunakan rizobakteri indigenos. Jurnal Hama dan Penyakit Tumbuhan Tropika, 14(1), 57–63. https://doi.org/10.23960/j.hptt.11457-63
Khaeruni, A., & Wijayanto, T. (2013). Pathotype grouping of Xanthomonas oryzae pv. oryzae isolates from South Sulawesi and Southeast Sulawesi. Agrivita, 35(2), 138–144. https://doi.org/10.17503/Agrivita-2013-35-2-p138-144
Khomampai, J., Jeeatid, N., Kaeomuangmoon, T., Pathom-Aree, W., Rangseekaew, P., Yosen, T., … & Chromkaew, Y. (2024). Endophytic actinomycetes promote growth and fruits quality of tomato (Solanum lycopersicum): An approach for sustainable tomato production. PeerJ, 12(7), e17725. https://doi.org/10.7717/peerj.17725
Korayem, A. S., Abdelhafez, A. A., Zaki, M. M., & Saleh, E. A. (2020). Biological control of green bean damping-off disease caused by Rhizoctonia solani by Streptomyces parvulus Strain 10d. Egyptian Journal of Microbiology, 55(1), 87–94. https://doi.org/10.21608/ejm.2020.22329.1145
Lahmyed, H., Bouharroud, R., Qessaoui, R., Ajerrar, A., Amarraque, A., Aboulhassan, M. A., & Chebli, B. (2021). Actinomycete as biocontrol agents against tomato gray mold disease caused by botrytis cinerea. Kuwait Journal of Science, 48(3), 1–8. https://doi.org/10.48129/kjs.v48i3.9200
Loliama, B., Morinagab, T., & Chaiyanana, S. (2013). Biocontrol of Pythium aphanidermatum by the cellulolytic actinomycetes Streptomyces rubrolavendulae S4. ScienceAsia, 39(6), 584–590. https://doi.org/10.2306/scienceasia1513-1874.2013.39.584
Long, C., Yang, T., Han, Y., & Han, L. (2023). Effects of Tsukamurella tyrosinosolvens P9 on growth, physiology and antioxdant enzyme of peanut under drought stress and after re-watering. Biocell, 47(6), 1417–1430. https://doi.org/10.32604/biocell.2023.027485
Muñoz-Bautista, J. M., Bernal-Mercado, A. T., Martínez-Cruz, O., Burgos-Hernández, A., López-Zavala, A. A., Ruiz-Cruz, S., ... & Del-Toro-Sánchez, C. L. (2025). Environmental and health impacts of pesticides and nanotechnology as an alternative in agriculture. Agronomy, 15(8), 1878. https://doi.org/10.3390/agronomy15081878
Nguyen, T. T., Nguyen, T. T., Nguyen, T. H., Nguyen, L. T., Tran, D. T., Dinh, S. T., ... & Nguyen, C. X. (2025). In silico and in vitro analyses reveal the potential use of Streptomyces parvulus VNUA74 as bioagent for sustainable banana production. Scientific Reports, 15(1), 7049. https://doi.org/10.1038/s41598-024-83520-2
Nimnoi, P., Pongsilp, N., & Lumyong, S. (2010). Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World Journal of Microbiology and Biotechnology, 26(2), 193–203. https://doi.org/10.1007/s11274-009-0159-3
Niones, J. T., Sharp, R. T., Donayre, D. K. M., Oreiro, E. G. M., Milne, A. E., & Oliva, R. (2022). Dynamics of bacterial blight disease in resistant and susceptible rice varieties. European Journal of Plant Pathology, 163(1), 1–17. https://doi.org/10.1007/s10658-021-02452-z
Niu, H., Sun, Y., Zhang, Z., Zhao, D., Wang, N., Wang, L., & Guo, H. (2022). The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiological Research, 256, 126956. https://doi.org/10.1016/j.micres.2021.126956
Nurbailis, N., Yanti, Y., & Djamaan, A. (2023). Potential of Trichoderma viridae secondary metabolites extracted with ethyl acetate in suppressing the growth of Colletotrichum gloesporoides in vitro. AIP Conference Proceedings, 2730(1), 80007. https://doi.org/10.1063/5.0128142
Paiva-silva, C., Pereira, J. P., Marcolino, F., Figueiredo, A., & Santos, R. B. (2025). Silenced cutters: Mechanisms and effects of protease inhibition in plant-pathogen interactions. Journal of Experimental Botany, 76(15), 4248–4261. https://doi.org/10.1093/jxb/eraf156
Palupi, T., & Riyanto, F. (2020). Seed coating with biological agents to improve the quality of rice seeds contaminated with blast pathogens and increase seedling growth. Biodiversitas, 21(2), 683–688. https://doi.org/10.13057/biodiv/d210234
Pandey, S. S. (2023). The role of iron in phytopathogenic microbe-plant interactions: Insights into virulence and host immune response. Plants, 12(17), 3173. https://doi.org/10.3390/plants12173173
Prokopenko, V. V., Zenova, G. M., & Manucharova, N. A. (2019). Ecophysiological characteristics of psychrotolerant actinomycetes in tundra and forest landscapes. Eurasian Soil Science, 52(6), 682–689. https://doi.org/10.1134/S1064229319040100
Rahma, H., Martinius, Khairul, U., & Rahmi, F. (2023a). The potential of beneficial microbes to suppress the development of bacterial leaf blight in rice plants caused by Xanthomonas oryzae pv. oryzae. Biodiversitas, 24(8), 4209–4217. https://doi.org/10.13057/biodiv/d240801
Rahma, H., Trisno, J., Martinus, & Shafira, S. (2023b). Potential of actinobacteria as biocontrol agents to Xanthomonas oryzae pv. oryzae in vitro. IOP Conference Series: Earth and Environmental Science, 1160(1), 012040. https://doi.org/10.1088/1755-1315/1160/1/012040
Rahmansyah, M., & Sudiana, I. M. (2010). Soil microbial enzymatic activity relate to role of methanotrophic bacteria in the tropical forest soil of Gunung Salak National Park. ARPN Journal of Agricultural and Biological Science 5(2), 51–57. Retrieved from https://www.arpnjournals.com/jabs/research_papers/rp_2010/jabs_0310_183.pdf
Retnowati, Y., Moeljopawiro, S., Djohan, T. S., & Soetarto, E. S. (2018). Antimicrobial activities of actinomycete isolates from rhizospheric soils in different mangrove forests of Torosiaje, Gorontalo, Indonesia. Biodiversitas, 19(6), 2196–2203. https://doi.org/10.13057/biodiv/d190627
Sacramento, D. R., Coelho, R. R. R., Wigg, M. D., Toledo Luna Linhares, L. F. D., Matos dos Santos, M. G., Azevedo Soares Semêdo, L. T. D., & Ribeiro da Silva, A. J. (2004). Antimicrobial and antiviral activities of an actinomycete (Streptomyces sp.) isolated from a Brazilian tropical forest soil. World Journal of Microbiology and Biotechnology, 20(3), 225–229. https://doi.org/10.1023/B:WIBI.0000023824.20673.2f
Sanya, D. R. A., Syed-Ab-Rahman, S. F., Jia, A., Onésime, D., Kim, K. M., Ahohuendo, B. C., & Rohr, J. R. (2022). A review of approaches to control bacterial leaf blight in rice. World Journal of Microbiology and Biotechnology, 38(7), 113. https://doi.org/10.1007/s11274-022-03298-1
Sawatphanit, N., Sutthisa, W., & Kumlung, T. (2022). Bioformulation development of Bacillus velezensis Strain N1 to control rice bacterial leaf blight. Trends in Sciences, 19(21), 6315–6315. https://doi.org/10.48048/tis.2022.6315
Sharma, P., Kalita, M. C., & Thakur, D. (2016). Broad spectrum antimicrobial activity of forest-derived soil actinomycete, Nocardia sp. PB-52. Frontiers in Microbiology, 7, 347. https://doi.org/10.3389/fmicb.2016.00347
Sharma, P., & Thakur, D. (2020). Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Scientific Reports, 10(1), 4104. https://doi.org/10.1038/s41598-020-60968-6
Shirokikh, I. G., & Shirokikh, A. A. (2017a). Biosynthetic potential of actinomycetes in brown forest soil on the eastern coast of the Aegean sea. Eurasian Soil Science, 50(11), 1311–1317. https://doi.org/10.1134/S1064229317110114
Shirokikh, I. G., & Shirokikh, A. A. (2017b). Soil actinomycetes in the National Forest Park in northeastern China. Eurasian Soil Science, 50(1), 78–83. https://doi.org/10.1134/S1064229316110089
Silva, G. D. C., Kitano, I. T., Ribeiro, I. A. de F., & Lacava, P. T. (2022). The potential use of actinomycetes as microbial inoculants and biopesticides in agriculture. Frontiers in Soil Science, 2, 833181. https://doi.org/10.3389/fsoil.2022.833181
Simko, I., & Piepho, H. (2012). The area under the disease progress stairs : Calculation, advantage, and application. Phytopathology, 102(4), 381–389. https://doi.org/10.1094/PHYTO-07-11-0216
Song, L., Wang, Q., Wang, C., Lin, Y., Yu, D., Xu, Z., … & Wu, Y. (2015). Effect of g-irradiation on rice seed vigor assessed by near-infrared spectroscopy. Journal of Stored Products Research, 62, 46–51. https://doi.org/10.1016/j.jspr.2015.03.009
Song, Z., Zheng, J., Zhao, Y., Yin, J., Zheng, D., Hu, H., ... & Liu, F. (2023). Population genomics and pathotypic evaluation of the bacterial leaf blight pathogen of rice reveals rapid evolutionary dynamics of a plant pathogen. Frontiers in Cellular and Infection Microbiology, 13, 1183416. https://doi.org/10.3389/fcimb.2023.1183416
Sreevidya, M., Gopalakrishnan, S., Kudapa, H., & Varshney, R. K. (2016). Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Brazilian Journal of Microbiology, 47(1), 85–95. https://doi.org/10.1016/j.bjm.2015.11.030
Subramoni, S., & Sonti, R. V. (2005). Growth deficiencey of a Xanthomonas oryzae pv. oryzae fur mutant in rice leaves is rescued by ascorbic acid supplementation. Molecular Plant-Microbe Interactions, 18(7), 644–651. https://doi.org/10.1094/MPMI-18-0644
Sudir, & Yuliani, D. (2016). Composition and distribution of Xanthomonas oryzae pv. oryzae pathotypes, the pathogen of rice bacterial leaf blight in Indonesia. Agrivita, 38(2), 174–185. https://doi.org/10.17503/agrivita.v38i2.588
Suparyono, S., Sudir, S., & Suprihanto, S. (2004). Pathotype profile of Xanthomonas oryzae pv. oryzae isolates from the rice ecosystem in Java. Indonesian Journal of Agricultural Science, 5(2), 63–69. Retrieved from https://epublikasi.pertanian.go.id/berkala/index.php/ijas/article/view/413
Świecimska, M., Golińska, P., Wypij, M., & Goodfellow, M. (2021). Catenulispora pinistramenti sp. Nov., novel actinobacteria isolated from pine forest soil in Poland. International Journal of Systematic and Evolutionary Microbiology, 71(10), 005063. https://doi.org/10.1099/ijsem.0.005063
Syahri, Giyanto, & Mutaqin, K. H. (2025). Alcaligenes faecalis—a maize endophytic bacterium to reduce Stewart wilt disease. Agriculture and Natural Resources, 59, 590302. https://doi.org/10.34044/j.anres.2025.59.3.02
Syahri, & Somantri, R. U. (2024). Research trend of bacterial leaf blight on rice in the millennium era: A bibliometric and scientometric approach for capture future insight. Journal of Tropical Plant Pests and Diseases, 24(2), 139–153. https://doi.org/10.23960/j.hptt.242139-153
Teymouri, M., Akhtari, J., Karkhane, M., & Marzban, A. (2016). Assessment of phosphate solubilization activity of Rhizobacteria in mangrove forest. Biocatalysis and Agricultural Biotechnology, 5, 168–172. https://doi.org/10.1016/j.bcab.2016.01.012
Tian, J., He, N., Hale, L., Niu, S., Yu, G., Liu, Y., … & Zhou, J. (2018). Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Functional Ecology, 32(1), 61–70. https://doi.org/10.1111/1365-2435.12952
Val-Torregrosa, B., Bundó, M., Martín-Cardoso, H., Bach-Pages, M., Chiou, T. J., Flors, V., & Segundo, B. S. (2022). Phosphate-induced resistance to pathogen infection in Arabidopsis. Plant Journal, 110(2), 452–469. https://doi.org/10.1111/tpj.15680
Vallet-Gely, I., Novikov, A., Augusto, L., Liehl, P., Bolbach, G., Péchy-Tarr, M., … & Lemaitre, B. (2010). Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Applied and Environmental Microbiology, 76(3), 910–921. https://doi.org/10.1128/AEM.02112-09
Van Hop, D., Hoa, P. T. P., Quang, N. D., Ton, P. H., Ha, T. H., Van Hung, N., ... & Thom, V. T. (2014). Biological control of Xanthomonas oryzae pv. oryzae causing rice bacterial blight disease by Streptomyces toxytricini VN08-A-12, isolated from soil and leaf-litter samples in Vietnam. Biocontrol Science, 19(3), 103–111. https://doi.org/10.4265/bio.19.103
Velho-Pereira, S., & Kamat, N. M. (2011). Antimicrobial screening of actinobacteria using a modified cross-streak method. Indian Journal of Pharmaceutical Sciences, 73(2), 223–228. https://doi.org/10.4103/0250-474X.91566
Verma, R. K., Samal, B., & Chatterjee, S. (2018). Xanthomonas oryzae pv. oryzae chemotaxis components and chemoreceptor Mcp2 are involved in the sensing of constituents of xylem sap and contribute to the regulation of virulence-associated functions and entry into rice. Molecular Plant Pathology, 19(1), 2397–2415. https://doi.org/10.1111/mpp.12718
Verma, S. K., Kingsley, K. L., Bergen, M. S., Kowalski, K. P., & White, J. F. (2018). Fungal disease prevention in seedlings of rice (Oryza sativa) and other grasses by growth-promoting seed-associated endophytic bacteria from invasive Phragmites australis. Microorganisms, 6(1), 21. https://doi.org/10.3390/microorganisms6010021
Whitten. (2003). How to use a Ragdoll test to estimate field germination. Natural Resources Conservation Center, 5, 662. Retrieved from https://www.nrcs.usda.gov/plantmaterials/mspmctn4808.pdf
Zhou, X., Fornara, D., Ikenaga, M., Akagi, I., Zhang, R., & Jia, Z. (2016). The resilience of microbial community under drying and rewetting cycles of three forest soils. Frontiers in Microbiology, 7, 1101. https://doi.org/10.3389/fmicb.2016.01101
Zulfa, N. V., Fitroh, M., Santoso, I., & Maryanto, A. E. (2021). Antagonistic potential of Streptomyces cellulosae SM12 against Ganoderma sp. TB3 and Ganoderma sp. TB4. Journal of Physics: Conference Series, 1725(1), 012055. https://doi.org/10.1088/1742-6596/1725/1/012055
Refbacks
- There are currently no refbacks.










