Associations and Multi-Traits Selection for Identifying Superior and Stable Maize Hybrids (Zea mays L.) Under Tropical Regions
Abstract
The development of maize hybrids that combine desirable agronomic traits and grain yield could enhance the likelihood of adopting new superior cultivars. Breeding programs that use specific selection criteria aim to produce high-yielding and stable hybrids with good agronomic performance. The study aimed to determine the superior and stable tropical maize hybrids using simultaneous selection based on trait associations. Ten maize hybrids were evaluated across 10 different environments in tropical regions using a randomized complete block design with 3 replications. Genotype, environment, and genotype-by-environment interactions exhibited statistically significant effects on all observed traits, indicating the differential genetic responses among hybrids across environments. Grain yield is significantly associated with agronomic traits and yield components, thus rendering it a suitable selection criterion for identifying superior genotypes. The heritability of each trait was high, along with selection gains, indicating good prospects for selection. Identifying genotypes using multiple traits can be effective for selecting the best genotype based on the selection criteria under multiple environments. H07, H04, and H05 were identified as superior and stable hybrids based on the multi-trait genotype-ideotype distance index (MGIDI) and multi-trait stability index (MTSI), as well as the factor analytic best linear unbiased prediction (FAI-BLUP) and Smith-Hazel. These hybrids can be used in future breeding programs and as candidates for superior tropical maize hybrids.
Keywords
Full Text:
PDFReferences
Albahri, G., Alyamani, A. A., Badran, A., Hijazi, A., Nasser, M., Maresca, M., & Baydoun, E. (2023). Enhancing essential grains yield for sustainable food security and bio-safe agriculture through latest innovative approaches. Agronomy, 13(7), 1709. https://doi.org/10.3390/agronomy13071709
Aman, J., Bantte, K., Alamerew, S., & Sbhatu, D. B. (2020). Correlation and path coefficient analysis of yield and yield components of quality protein maize (Zea mays L.) hybrids at Jimma, western Ethiopia. International Journal of Agronomy, 2020(1), 9651537. https://doi.org/10.1155/2020/9651537
Ambrósio, M., Daher, R. F., Santos, R. M., Santana, J. G. S., Vidal, A. K. F., Nascimento, M. R., ... & Dos Santos, P. R. (2024). Multi-trait index: Selection and recommendation of superior black bean genotypes as new improved varieties. BMC Plant Biology, 24(1), 525. https://doi.org/10.1186/s12870-024-05248-5
Aruna, K., Kumar, B. M. D., Sridhara, S., Sowjanya, B. A., Kumar, K. L. N., Moussa, I. M., ... & Olivoto, T. (2024). Multi-trait stability index for identification of stable green gram (Vigna radiata (L.) Wilczek) genotypes with MYMV resistance. Heliyon, 10(12), e32763. https://doi.org/10.1016/j.heliyon.2024.e32763
Azrai, M., Aqil, M., Efendi, R., Andayani, N. N., Makkulawu, A. T., Iriany, R. N., ... & Suwarno, W. B. (2023). A comparative study on single and multiple trait selections of equatorial grown maize hybrids. Frontiers in Sustainable Food Systems, 7, 1185102. https://doi.org/10.3389/fsufs.2023.1185102
Benakanahalli, N. K., Sridhara, S., Ramesh, N., Olivoto, T., Sreekantappa, G., Tamam, N., ... & Abdelmohsen, S. A. (2021). A framework for identification of stable genotypes basedon MTSI and MGDII indexes: An example in guar (Cymopsis tetragonoloba L.). Agronomy, 11(6), 1221. https://doi.org/10.3390/agronomy11061221
Daemo, B. B., Wolancho, G. B., Arke, Z. A., Wakalto, D. D., & Onu, M. H. (2024). Performance evaluation and stability of maize (Zea mays L.) genotypes for grain yield using AMMI and GGE biplot. International Journal of Agronomy, 2024(1), 8801999. https://doi.org/10.1155/2024/8801999
Debnath, P., Chakma, K., Bhuiyan, M. S. U., Thapa, R., Pan, R., & Akhter, D. (2024). A novel multi trait genotype ideotype distance index (MGIDI) for genotype selection in plant breeding: Application, prospects, and limitations. Crop Design, 3(4), 100074. https://doi.org/10.1016/j.cropd.2024.100074
Dermail, A., Fuengtee, A., Lertrat, K., Suwarno, W. B., Lübberstedt, T., & Suriharn, K. (2022). Simultaneous selection of sweet-waxy corn ideotypes appealing to hybrid seed producers, growers, and consumers in Thailand. Agronomy, 12(1), 87. https://doi.org/10.3390/agronomy12010087
Engida, B. T., Tarekegne, A., Wegary, D., Van Biljon, A., & Labuschagne, M. T. (2024). Genotype × environment interaction and grain yield stability of quality protein maize hybrids under stress and non-stress environments. Cogent Food & Agriculture, 10(1), 2324537. https://doi.org/10.1080/23311932.2024.2324537
Falcon, C. M., Kaeppler, S. M., Spalding, E. P., Miller, N. D., Haase, N., AlKhalifah, N., ... & de Leon, N. (2019). Relative utility of agronomic, phenological, and morphological traits for assessing genotype‐by‐environment interaction in maize inbreds. Crop Science, 60(1), 62–81. https://doi.org/10.1002/csc2.20035
FAO. (2017). The future of food and agriculture – Trends and challenges. Rome: Food and Agriculture Organization of the United Nations. Retrieved from https://openknowledge.fao.org/server/api/core/bitstreams/2e90c833-8e84-46f2-a675-ea2d7afa4e24/content
Gela, T. S., Khazaei, H., Podder, R., & Vandenberg, A. (2023). Dissection of genotype‐by‐environment interaction and simultaneous selection for grain yield and stability in faba bean (Vicia faba L.). Agronomy Journal, 115(2), 474–488. https://doi.org/10.1002/agj2.21268
Grote, U., Fasse, A., Nguyen, T. T., & Erenstein, O. (2021). Food security and the dynamics of wheat and maize value chains in Africa and Asia. Frontiers in Sustainable Food Systems, 4, 617009. https://doi.org/10.3389/fsufs.2020.617009
Habtegebriel, M. H., & Abebe, A. T. (2023). Grain yield stability of soybean (Glycine max (L.) Merrill) for different stability models across diverse environments of Ethiopia. Agrosystems, Geosciences & Environment, 6(3), e20396. https://doi.org/10.1002/agg2.20396
Hazel, L. N. (1943). The genetic basis for constructing selection indexes. Genetics, 28(6), 476–490. https://doi.org/10.1093/genetics/28.6.476
Kendal, E. (2019). Comparing durum wheat cultivars by genotype× yield× trait and genotype× trait biplot method. Chilean Journal of Agricultural Research, 79(4), 512–522. http://dx.doi.org/10.4067/S0718-58392019000400512
Klein, L. A., Marchioro, V. S., Toebe, M., Olivoto, T., Meira, D., Meier, C., ... & Finatto, J. L. B. (2023). Selection of superior black oat lines using the MGIDI index. Crop Breeding and Applied Biotechnology, 23(3), e45112332. https://doi.org/10.1590/1984-70332023v23n3a25
Konate, L., Badu-Apraku, B., Coulibaly, M., Menkir, A., Laouali, M. N., Meseka, S., & Mengesha, W. (2023). Agronomic performance and yield stability of extra-early maturing maize hybrids in multiple environments in the Sahel. Heliyon, 9(11), e21659. https://doi.org/10.1016/j.heliyon.2023.e21659
Korsa, F., Dessalegn, O., Zeleke, H., & Petros, Y. (2024). Genetic variability for the yield and yield‐related traits in some maize (Zea mays L.) inbred lines in the central highland of Ethiopia. International Journal of Agronomy, 2024(1), 9721304. https://doi.org/10.1155/2024/9721304
Liu, C., Ma, C., Lü, J., & Ye, Z. (2022). Yield stability analysis in maize hybrids of Southwest China under genotype by environment interaction using GGE biplot. Agronomy, 12(5), 1189. https://doi.org/10.3390/agronomy12051189
Nardino, M., Perin, E. C., Aranha, B. C., Carpes, S. T., Fontoura, B. H., de Sousa, D. J. P., & Freitas, D. S. D. (2022). Understanding drought response mechanisms in wheat and multi-trait selection. PLoS ONE, 17(4), e0266368. https://doi.org/10.1371/journal.pone.0266368
Olivoto, T., & Lúcio, A. D. (2020). Metan: An R package for multi-environment trial analysis. Methods in Ecology and Evolution, 11(6), 783–789. https://doi.org/10.1111/2041-210x.13384
Olivoto, T., & Nardino, M. (2021). MGIDI: Toward an effective multivariate selection in biological experiments. Bioinformatics, 37(10), 1383–1389. https://doi.org/10.1093/bioinformatics/btaa981
Olivoto, T., Diel, M. I., Schmidt, D., & Lúcio, A. D. (2022). MGIDI: A powerful tool to analyze plant multivariate data. Plant Methods, 18(1), 121. https://doi.org/10.1186/s13007-022-00952-5
Olivoto, T., Lúcio, A. D., da Silva, J. A., Marchioro, V. S., de Souza, V. Q., & Jost, E. (2019). Mean performance and stability in multi‐environment trials I: Combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6), 2949–2960. https://doi.org/10.2134/agronj2019.03.0220
Olivoto, T., Nardino, M., Meira, D., Meier, C., Follmann, D. N., de Souza, V. Q., ... & Baretta, D. (2021). Multi‐trait selection for mean performance and stability in maize. Agronomy Journal, 113(5), 3968–3974. https://doi.org/10.1002/agj2.20741
Pour-Aboughadareh, A., Jamshidi, B., Jadidi, O., Bocianowski, J., & Niemann, J. (2025). Multi-trait stability index in the selection of high-yielding and stable barley genotypes. Journal of Applied Genetics, 1–7. https://doi.org/10.1007/s13353-025-00998-w
Rocha, J. R. D. A. S. D. C., Machado, J. C., & Carneiro, P. C. S. (2018). Multitrait index based on factor analysis and ideotype‐design: Proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy, 10(1), 52–60. https://doi.org/10.1111/gcbb.12443
Rozi, F., Santoso, A. B., Mahendri, I. G. A. P., Hutapea, R. T. P., Wamaer, D., Siagian, V., ... & Syam, A. (2023). Indonesian market demand patterns for food commodity sources of carbohydrates in facing the global food crisis. Heliyon, 9(6), e16809. https://doi.org/10.1016/j.heliyon.2023.e16809
Ruswandi, D., Syafii, M., Wicaksana, N., Maulana, H., Ariyanti, M., Indriani, N. P., ... & Yuwariah, Y. (2022). Evaluation of high yielding maize hybrids based on combined stability analysis, sustainability index, and GGE biplot. BioMed Research International, 2022(1), 3963850. https://doi.org/10.1155/2022/3963850
Shojaei, S. H., Mostafavi, K., Khosroshahli, M., Reza Bihamta, M., & Ramshini, H. (2020). Assessment of genotype‐trait interaction in maize (Zea mays L.) hybrids using GGT biplot analysis. Food Science & Nutrition, 8(10), 5340–5351. https://doi.org/10.1002/fsn3.1826
Shojaei, S. H., Mostafavi, K., Omrani, A., Illés, Á., Bojtor, C., Omrani, S., ... & Nagy, J. (2022). Comparison of maize genotypes using drought-tolerance indices and graphical analysis under normal and humidity stress conditions. Plants, 11(7), 942. https://doi.org/10.3390/plants11070942
Shojaei, S. H., Mostafavi, K., Omrani, A., Omrani, S., Nasir Mousavi, S. M., Illés, Á., ... & Nagy, J. (2021). Yield stability analysis of maize (Zea mays L.) hybrids using parametric and AMMI methods. Scientifica, 2021(1), 5576691. https://doi.org/10.1155/2021/5576691
Sholehah, M. R., Suwarno, W. B., Hapsari, V. P., Sulistyo, N. N., Marwiyah, S., & Aswidinnoor, H. (2024). Rice breeding for multi‐canopy system: Estimations of genetic parameters and response to selection. Agronomy Journal, 116(5), 2129–2140. https://doi.org/10.1002/agj2.21629
Shrestha, S., Niraula, D., Regmi, S., Basnet, S., Chhetri, S. T., & Kandel, B. P. (2023). Performance evaluation and genetic parameters estimation of multi-companies maize hybrids in Lamahi Dang, Nepal. Heliyon, 9(3), e14552. https://doi.org/10.1016/j.heliyon.2023.e14552
Singamsetti, A., Shahi, J. P., Zaidi, P. H., & Seetharam, K. (2022). Study on applicability of genotype x yield x trait (GYT) biplots over genotype x trait (GT) biplots in selection of maize hybrids across soil moisture regimes. Indian Journal of Agricultural Research, 58(6), 1145–1151. https://doi.org/10.18805/IJARE.A-5850
Singamsetti, A., Shahi, J. P., Zaidi, P. H., Seetharam, K., Vinayan, M. T., Kumar, M., ... & Madankar, K. (2021). Genotype× environment interaction and selection of maize (Zea mays L.) hybrids across moisture regimes. Field Crops Research, 270, 108224. https://doi.org/10.1016/j.fcr.2021.108224
Singamsetti, A., Zaidi, P. H., Seetharam, K., Vinayan, M. T., Olivoto, T., Mahato, A., ... & Shikha, K. (2023). Genetic gains in tropical maize hybrids across moisture regimes with multi-trait-based index selection. Frontiers in Plant Science, 14, 1147424. https://doi.org/10.3389/fpls.2023.1147424
Smith, H. A. (1936). A discriminant function for plant selection. Annals of Eugenics, 7(3), 240–250. https://doi.org/10.1111/j.1469-1809.1936.tb02143.x
Stansluos, A. A. L., Öztürk, A., Niedbała, G., Türkoğlu, A., Haliloğlu, K., Szulc, P., ... & Piekutowska, M. (2023). Genotype–trait (GT) biplot analysis for yield and quality stability in some sweet corn (Zea mays L. Saccharata sturt.) genotypes. Agronomy, 13(6), 1538. https://doi.org/10.3390/agronomy13061538
Subramani, P., Nalliappan, G. K., Narayana, M., Veerasamy, R., & Natesan, S. (2024). Selection of superior and stable fodder maize hybrids using MGIDI and MTSI indices. Crop Breeding and Applied Biotechnology, 24(4), e498624418. https://doi.org/10.1590/1984-70332024v24n4a55
Supriadi, D., Bimantara, Y. M., Zendrato, Y. M., Widaryanto, E., Kuswanto, K., & Waluyo, B. (2024). Assessment of genotype by environment and yield performance of tropical maize hybrids using stability statistics and graphical biplots. PeerJ, 12, e18624. https://doi.org/10.7717/peerj.18624
Taleghani, D., Rajabi, A., Saremirad, A., & Fasahat, P. (2023). Stability analysis and selection of sugar beet (Beta vulgaris L.) genotypes using AMMI, BLUP, GGE biplot and MTSI. Scientific Reports, 13(1), 10019. https://doi.org/10.1038/s41598-023-37217-7
Uberti, A., Rezende, W. M., Caixeta, D. G., Reis, H. M., Resende, N. C. V., Destro, V., & DeLima, R. O. (2023). Assessment of yield performance and stability of hybrids and populations of tropical maize across multiple environments in Southeastern Brazil. Crop Science, 63(4), 2012–2032. https://doi.org/10.1002/csc2.20964
Wicaksana, N., Maulana, H., Yuwariah, Y., Ismail, A., Ruswandi, Y. A. R., & Ruswandi, D. (2022). Selection of high yield and stable maize hybrids in mega-environments of Java Island, Indonesia. Agronomy, 12(12), 2923. https://doi.org/10.3390/agronomy12122923
Woyann, L. G., Meira, D., Matei, G., Zdziarski, A. D., Dallacorte, L. V., Madella, L. A., & Benin, G. (2020). Selection indexes based on linear‐bilinear models applied to soybean breeding. Agronomy Journal, 112(1), 175–182. https://doi.org/10.1002/agj2.20044
Yan, W., & Frégeau-Reid, J. (2018). Genotype by yield* trait (GYT) biplot: A novel approach for genotype selection based on multiple traits. Scientific Reports, 8(1), 8242. https://doi.org/10.1038/s41598-018-26688-8
Yan, W., & Rajcan, I. (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42(1), 11–20. https://doi.org/10.2135/cropsci2002.1100
Zendrato, Y. M., Azizah, Y. A., Humam, B. K., Marwiyah, S., Ritonga, A. W., Azrai, M., ... & Suwarno, W. B. (2025). Maize hybrids’ response to optimum and suboptimum abiotic environmental conditions using genotype by environment interaction analysis. Sabrao Journal of Breeding and Genetics, 57(2), 447–458. http://doi.org/10.54910/sabrao2025.57.2.5
Zendrato, Y. M., Suwarno, W. B., & Marwiyah, S. (2024a). Multi-trait selection of tropical maize genotypes under optimum and acidic soil conditions. Sabrao Journal of Breeding and Genetics, 56(1), 142–155. http://doi.org/10.54910/sabrao2024.56.1.13
Zendrato, Y. M., Suwarno, W. B., & Marwiyah, S. (2024b). Simultaneous selection of several tropical maize hybrids under acidic soil conditions. IOP Conference Series: Earth and Environmental Science, 1377(1), 012096. http://doi.org/10.1088/1755-1315/1377/1/012096
Zuffo, A. M., Steiner, F., Aguilera, J. G., Teodoro, P. E., Teodoro, L. P. R., & Busch, A. (2020). Multi‐trait stability index: A tool for simultaneous selection of soya bean genotypes in drought and saline stress. Journal of Agronomy and Crop Science, 206(6), 815–822. https://doi.org/10.1111/jac.12409
Refbacks
- There are currently no refbacks.










