Simulation-Based System Modeling of Grazing Land Management for Beef Cattle Development in East Luwu, Indonesia

Sema Sema, Jasmal Ahmari Syamsu, Ambo Ako, Rinduwati Rinduwati

Abstract

Significant population growth has increased demand for beef, while domestic production lags. Poor grazing land management and cattle population pressure remain major constraints, underscoring the need for sustainable solutions. This study aims to develop a system dynamics model and formulate grazing land management strategies to support sustainable beef cattle farming in East Luwu Regency, as one of the cattle production centers in South Sulawesi with extensive but increasingly degraded grazing lands. Conducted from May to July 2025, the model integrated grazing land and cattle population dynamics through causal loop and stock-flow diagrams, while the analytical hierarchy process (AHP) was used to prioritize management strategies. The model reveals that cattle population dynamics are primarily influenced by forage availability, cattle purchases, and birth rates, while grazing land depends on water supply, soil quality, and land availability. From 2020 to 2024, the average grazing land area was 3,013.72 ha with a grass regeneration rate of 1.11 kg ha-1 day-1 and a declining maximum carrying capacity (3,075 ind ha-1 year-1). During the same period, the cattle population averaged 20,411 heads but declined annually by -1,036.5 heads, with a feed ratio of only 0.03% per day, highlighting the urgent need for an effective management strategy. The AHP results indicate that the Integrated Feed Management and Population Control (IFM-PC) strategy achieved the highest score across sustainability criteria, while the reduced stocking rate (SR↓/ha) ranked lowest. This study concludes that grazing land and cattle populations in East Luwu are undergoing considerable degradation, and implementing IFM-PC is crucial for long-term sustainability.

Keywords

analytical hierarchy process (AHP); causal loop diagram (CLD); meat production; stock flow diagram (SFD); sustainable agriculture

Full Text:

PDF

References

Angon, P. B., Mondal, S., Jahan, I., Datto, M., Antu, U. B., Ayshi, F. J., & Islam, M. S. (2023). Integrated pest management (IPM) in agriculture and its role in maintaining ecological balance and biodiversity. Advances in Agriculture, 1, 5546373. https://doi.org/10.1155/2023/5546373

Azine, P. C., Mugumaarhahama, Y., Mutwedu, V. B., Baenyi, S. P., Kunde, E. A., Mwanga, J. I., … & Ayagirwe, R. B. (2025). Livestock feeding practices in South Kivu, Eastern Democratic Republic of Congo: Challenges and opportunities. Discover Animals, 2, 8. https://doi.org/10.1007/s44338-025-00053-2

Baldwin, T., Ritten, J. P., Derner, J. D., Augustine, D. J., Wilmer, H., Wahlert, J., … & Peck, D. E. (2022). Stocking rate and marketing dates for yearling steers grazing rangelands: Can producers do things differently to increase economic net benefits?. Rangelands, 44(4), 251–257. https://doi.org/10.1016/j.rala.2022.04.002

Duguma, B., & Janssens, G. P. J. (2021). Assessment of livestock feed resources and coping strategies with dry season feed scarcity in mixed crop–livestock farming systems around the Gilgel Gibe catchment, Southwest Ethiopia. Sustainability, 13(19), 10713. https://doi.org/10.3390/su131910713

ERS. (2022). Study examines how and where U.S. cow-calf operations use rotational grazing. USDA Economic Research Service. Retrieved from https://www.ers.usda.gov/amber-waves/2022/november/study-examines-how-and-where-u-s-cow-calf-operations-use-rotational-grazing

Escarcha, J. F., Lassa, J. A., & Zander, K. K. (2018). Livestock under climate change: A systematic review of impacts and adaptation. Climate, 6(3), 54. https://doi.org/10.3390/cli6030054

FAO. (2016). Sustainable Development Goals. Food and Agriculture Organization. Retrieved from http://www.fao.org/sustainabledevelopment-goals/en/.

Gan, J., Wang, X., & Zhang, G. (2025). Impacts of the duration and intensity of grazing cycle on vegetation population dynamics in semi-arid ecosystems with seasonal succession. arXiv, 2508.09760. https://doi.org/10.48550/arXiv.2508.09760

Ge, P., Xue, J., Ru, Y., Li, Y., Li, D., Han, P., … & Huang, J. (2025). Intensive rotational grazing has positive effects on productivity of rangeland. Agriculture, Ecosystems & Environment, 384, 109558. https://doi.org/10.1016/j.agee.2025.109558

Gebresenbet, G., Bosona, T., Patterson, D., Persson, H., Fischer, B., Mandaluniz, N., … & Nasirahmad, A. (2023). A concept for application of integrated digital technologies to enhance future smart agricultural systems. Smart Agricultural Technology, 5, 100255. https://doi.org/10.1016/j.atech.2023.100255

Giri, S., & Nejadhashemi, A. P. (2014). Application of analytical hierarchy process for effective selection of agricultural best management practices. Journal of Environmental Management, 132, 165–177. https://doi.org/10.1016/j.jenvman.2013.10.021

Gotelli, N. J. (1995). A primer of ecology (2nd ed.). Massachusetts, United States: Sinauer Associates.Grant, W. E. (1998). Ecology and natural resource management: Reflections from a systems perspective. Ecological Modelling, 108(1–3), 67–76. https://doi.org/10.1016/S0304-3800(98)00019-2

Guáqueta-Solórzano, V.-E., Ortiz-Guerrero, C. E., & Castañeda Salazar, E. (2025). Do small livestock producers adapt to climate variability? An approach to the case of the upper Fonce River Páramo in Santander, Colombia. Land, 14(5), 1068. https://doi.org/10.3390/land14051068

Hasan, S., Natsir, A., Ako, A., Purnama, A., & Ishii, Y. (2016). Evaluation of tropical grasses on mine revegetation for herbage supply to Bali cattle in Sorowako, South Sulawesi, Indonesia. OnLine Journal of Biological Sciences, 16(2), 102–106. https://doi.org/10.3844/ojbsci.2016.102.106

Hidayat, Y., Rachman, L.M., Wahjunie, E. D., Baskoro, D. P. T., Purwakusuma, W., Yusuf, S. M., & Araswati, F. D. (2024). Water balance prediction by simulating land use planning and water retention infrastructure in upper Cisadane Sub-Watershed, West Java, Indonesia. Journal of Natural Resources and Environmental Management, 14(2), 415–427. https://doi.org/10.29244/jpsl.14.2.415

Hilmiati, N., Ilham, N., Nulik, J., Rohaeni, E. S., deRosari, B., Basuki, T., ... & Yusriani, Y. (2024). Smallholder cattle development in Indonesia: Learning from the past for an outcome-oriented development model. International Journal of Design & Nature and Ecodynamics, 19(1), 168–194. https://doi.org/10.18280/ijdne.190119

Hou, L., Xin, X., Shen, B., Qin, Q., Altome, A. I. A., Hamed, Y. M. Z., ... & Sun, H. (2023). Effects of long-term grazing on feed intake and digestibility of cattle in Meadow Steppe. Agronomy, 13(7), 1760. https://doi.org/10.3390/agronomy13071760

Ibrahim, K. H., & Usman, L. A. (2021). Management practices of pasture, range and grazing reserves for livestock production in the tropics: A review. American Journal of Entomology, 5(2), 18–26. https://doi.org/10.11648/j.aje.20210502.11

Isyanto, A. Y., & Sugianto, I. (2016). Factors influencing population of beef cattle in Ciamis Regency, West Java Province, Indonesia. Journal of Economics and Sustainable Development, 7(22), 34–38. Retrieved from https://www.iiste.org/Journals/index.php/JEDS/article/view/34173

Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., ... & Wheeler, T. R. (2017). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 155, 269–288. https://doi.org/10.1016/j.agsy.2016.09.021

Keno, M. T., Tolemariam, T., Demeke, S., Wamatu, J., Alkhtib, A., & Janssens, G. P. J. (2021). Effect of barley variety on feed intake, digestibility, body weight gain and carcass characteristics in fattening lambs. Animals, 11(6), 1773. https://doi.org/10.3390/ani11061773

Lei, L., Zheng, J., Li, S., Yang, L., Wang, W., Zhang, F., & Zhang, B. (2023). Soil hydrological properties’ response to long-term grazing on a desert steppe in inner Mongolia. Sustainability, 15(23), 16256. https://doi.org/10.3390/su152316256

Lin, G., Palopoli, M., & Dadwal, V. (2020). From causal loop diagrams to system dynamics models in a data-rich ecosystem. Leveraging Data Science for Global Health (pp. 77–98). Springer. https://doi.org/10.1007/978-3-030-47994-7_6

Makkar, H. P. S. (2018). Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal, 12(8), 1744–1754. https://doi.org/10.1017/S175173111700324X

Marchegiani, S., Gislon, G., Marino, R., Caroprese, M., Albenzio, M., Pinchak, W. E., ... & Ceccobelli, S. (2025). Smart technologies for sustainable pasture-based ruminant systems: A review. Smart Agricultural Technology, 10, 100789. https://doi.org/10.1016/j.atech.2025.100789

Mohammed, S. (2025). Modeling current and future run-off and soil erosion dynamics in eastern mediterranean ecosystems using the WEPP model. Energy Nexus, 17, 100375. https://doi.org/10.1016/j.nexus.2025.100375

Mondal, K., Chowdhury, M., Dutta, S., Satpute, A. N., Jha, A., Khose, S., … & Das, S. (2025). Synergising agricultural systems: A critical review of the interdependencies within the water-energy-food nexus for sustainable Futures. Water-Energy Nexus, 8, 167–188. https://doi.org/10.1016/j.wen.2025.04.004

Muhie, S. H. (2022). Novel approaches and practices to sustainable agriculture. Journal of Agriculture and Food Research, 10, 100446. https://doi.org/10.1016/j.jafr.2022.100446

Nugroho, S., & Uehara, T. (2023). Systematic review of agent-based and system dynamics models for social-ecological system case studies. Systems, 11(11), 530. https://doi.org/10.3390/systems11110530

Odoemena, K. G., Walters, J. P., & Kleemann, H. M. (2020). A system dynamics model of supply-side issues influencing beef consumption in Nigeria. Sustainability, 12(8), 3241. https://doi.org/10.3390/su12083241

Odum, E. P., & Barrett, G. W. (2004). Fundamentals of ecology (5th ed.). Massachusetts, United States: Cengage Learning. Retrieved from https://scholar.google.co.id/scholar?cites=2719171379193776878&as_sdt=2005&sciodt=0,5&hl=id&authuser=3

O’Grady, A. P., Mendham, D. S., Mokany, K., Smith, G. S., Stewart, S. B., & Harrison, M. T. (2024). Grazing systems and natural capital: Influence of grazing management on natural capital in extensive livestock production systems. Nature-Based Solutions, 6, 100181. https://doi.org/10.1016/j.nbsj.2024.100181

Ojo, A. O., Mulim, H. A., Campos, G. S., Junqueira, V. S., Lemenager, R. P., Schoonmaker, J. P., & Oliveira, H. R. (2024). Exploring feed efficiency in beef cattle: From data collection to genetic and nutritional modeling. Animals, 14(24), 3633. https://doi.org/10.3390/ani14243633

OpenStax. (2022). The Logistic Equation. In Calculus (Ch. 8.4). Retrieved from https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)/08%3A_Introduction_to_Differential_Equations/8.04%3A_The_Logistic_Equation

Owensby, C. E., & Auen, L. M. (2013). Comparison of season-long grazing applied annually and a 2-year rotation of intensive early stocking plus late-season grazing and season-long grazing. Rangeland Ecology & Management, 66(6), 700–705. https://doi.org/10.2111/REM-D-13-00014.1

Parmawati, R., Mashudi, B., Budiarto, A., Suyadi, & Kurniantoa, A. S. (2018). Developing sustainable livestock production by feed adequacy map: A case study in Pasuruan, Indonesia. Tropical Animal Science Journal, 41(1), 67–76. https://doi.org/10.5398/tasj.2018.41.1.67

Peters, C. J., Picardy, J., Darrouzet-Nardi, A. F., Wilkins, J. L., Griffin, T. S., & Fick, G. W. (2016). Carrying capacity of U.S. agricultural land: Ten diet scenarios. Elementa: Science of the Anthropocene, 4, 000116. https://doi.org/10.12952/journal.elementa.000116

Piipponen, J., Jalava, M., Leeuw, J. D., Rizayeva, A., Godde, C., Cramer, G., Herrero, M., & Kummu, M. (2022). Global trends in grassland carrying capacity and relative stocking density of livestock. Global Change Biology, 28(12), 3902–3919. https://doi.org/10.1111/gcb.16174

Puliod, M., Schnabel, S., Contador, J. F. L., Lozano-Parra, J., & González, F. (2018). The impact of heavy grazing on soil quality and pasture production in rangelands of SW Spain. Land Degradation & Development, 29(2), 219–230. https://doi.org/10.1002/ldr.2501

Rey, M. J. (2022). La reconfiguración de la industria frigorífica en Uruguay, 1980-2015. Tiempo Y economía, 9(1), 125–151. https://doi.org/10.21789/24222704.1725

Russias, R., Delagarde, R., Klumpp, K., & Michaud, A. (2025). Clarifying grazing management methods: A data-driven review. Sustainability, 17(11), 5200. https://doi.org/10.3390/su17115200

Saaty, T. L. (1980). Hierarchy process: Planning, Priority Setting, Resource Allocation. Columbus, United State: McGraw-Hill.

Saputra, S. F. D., Setiawan, B. I., Arif, C., Saptomo, S. K., Fitriyah, A., & Kato, T. (2025). Assessment of future water availability and seasonal patterns of dry seasons under climate change in Cidanau Watershed Banten Province, Indonesia. Journal of Hydrology: Regional Studies, 59, 102344. https://doi.org/10.1016/j.ejrh.2025.102344

Sekaran, U., Lai, L., Ussiri, D. A. N., Kumar, S., & Clay, S. (2021). Role of integrated crop-livestock systems in improving agriculture production and addressing food security – A review. Journal of Agriculture and Food Research, 5, 100190. https://doi.org/10.1016/j.jafr.2021.100190

Sema, S., Nurjaya, N., Syahrullah, S., Septiani, T., Rinduwati, R., & Hasan, S. (2023). Botanical composition and forage production in the dry season in natural pasture. AIP Conference Proceedings, 2628(1), 110001. https://doi.org/10.1063/5.0143992

Shahsavari-Pour, N., Rahimi-Ashjerdi, S., Heydari, A., & Fekih, A. (2023). A system dynamics approach to optimize milk production in an industrial ranch. Applied Sciences, 13(3), 1662. https://doi.org/10.3390/app13031662

Sonea, C., Gheorghe-Irimia, R. A., Tapaloaga, D., Gurau, M. R., Udrea, L., & Tapaloaga, P. (2023). Optimizing animal nutrition and sustainability through precision feeding: A mini review of emerging strategies and technologies. Annals “Valahia” University of Târgoviște – Agriculture, 15(2), 7–11. https://doi.org/10.2478/agr-2023-0011

Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., ... & Willett, W. (2018). Options for keeping the food system within environmental limits. Nature, 562, 519–525. https://doi.org/10.1038/s41586-018-0594-0

Statistics of Indonesia. (2022a). Statistical yearbook of Indonesia 2021. Retrieved from https://www.bps.go.id/en/publication/2021/07/06/162d7d87e5233be68ec0b5f1

Statistics of Indonesia. (2022b). Luwu Timur Regency in figures 2022. Retrieved from https://luwutimurkab.bps.go.id/id/publication/2022/02/25/7452a8d0f92579822148dd22/kabupaten-luwu-timur-dalam-angka-2022.html

Sulfiar, A. E. T., Atmoko, B. A., Guntoro, B., & Budisatria, I. G. S. (2020). Study of pasture productivity for semi-intensive cattle system during dry season in the South Konawe Regency, Southeast Sulawesi. Bulletin of Animal Science, 44(3), 85–91. https://doi.org/10.21059/buletinpeternak.v44i3.52742

Syamsu, J. A., Yusuf, M., & Zulkharnaim. (2018). Sustainability status of pasture for cattle development area in Pinrang Regency, South Sulawesi. IOP Conference Series: Earth and Environmental Science, 247(1), 012058. https://doi.org/10.1088/1755-1315/247/1/012058

Tedeschi, L. O., Johnson, D. C., Atzori, A. S., Kaniyamattam, K., & Menendez, H. M. (2024). Applying systems thinking to sustainable beef production management: Modeling-based evidence for enhancing ecosystem services. Systems, 12(11), 446. https://doi.org/10.3390/systems12110446

Tilahun, M., Zewdu, T., & Ebro, A. (2022). Carbon sequestration potential of grazing lands in Abijata-Shalla Lake National Park, Oromia Regional State, Ethiopia. Science Frontiers, 3(2), 74–87. https://doi.org/10.11648/j.sf.20220302.13

Umuhoza, J., Jiapaer, G., Yin, H., Mind’je, R., Gasirabo, A., Nzabarinda, V., & Umwali, E. D. (2021). The analysis of grassland carrying capacity and its impact factors in typical mountain areas in Central Asia—A case of Kyrgyzstan and Tajikistan. Ecological Indicators, 131, 108129. https://doi.org/10.1016/j.ecolind.2021.108129

United Nations. (2017). World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. United Nations. Retrieved from https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100

Wang, G., Li, Y., Fan, L., Ma, X., Liang, Y., Hui, T., … & Mao, J. (2024). Assessment of grassland carrying capacity drivers and evaluation of pasture-livestock balance: A case study of Xinjiang, China. Global Ecology and Conservation, 55, e03203. https://doi.org/10.1016/j.gecco.2024.e03203

Wang, Z., Johnson, D., Rong, Y., & Wang, K. (2016). Grazing effects on soil characteristics and vegetation of grassland in Northern China. Solid Earth, 7, 55–65. https://doi.org/10.5194/sed-7-2283-2015

Whitten, S. M., Meier, E., Liedloff, A., Langston, A., Coggan, A., & Gorddard, R. (2019). Natural capital and native grazing pastoral systems in Australia: A tale of the north and south. Bioecon-Network, 29 pp. Retrieved from https://www.bioecon-network.org/pages/21th_2019/D1/Whitten,%20Stuart%20-Natural%20capital%20and%20native%20grazing%20pastoral%20systems%20in%20Australia%20-%20A%20tale%20of%20the%20north%20and%20south%20.pdf

Xue, Z., Yan, H., & Zhen, L. (2023). For a better quality of beef: The challenge from growing livestock on limited grasslands with a production–consumption balance perspective. Foods, 12(17), 3231. https://doi.org/10.3390/foods12173231

Refbacks

  • There are currently no refbacks.