Bacteria Elimination of Xanthomonas axonopodis pv. glycine and Improvement of Viability of Soybean Seeds Through a Combination of Temperature and Duration of Dry Heat Treatment

Aprilia Diandra Savitri, Imelda Milaros, Irene Patria Hannyvone, Evan Purnama Ramdan

Abstract

Soybean is the main food crop in Indonesia, besides rice and corn, and its need continues to increase. X. axonopodis pv. glycine (Xag) is a pathogen that causes bacterial pustule disease in soybeans, which can cause soybean productivity to decrease by 57.61%. Xag is also a seed-borne pathogen that spreads through seeds, reaching 8%. Therefore, this study aims to determine the optimum combination of dry heat treatment techniques to eliminate Xag and increase seed viability and vigor. The study was arranged in a randomized complete factorial design consisting of 2 factors: the temperature factor of control, 25 and 45°C, and the duration factor of 6, 12, and 18 hours. Soybean seeds inoculated with Xag were then given a dry heat treatment (DHT) treatment of 100 seeds each. Then, the population of Xag bacteria, germination, vigor index, and seed viability were calculated. The results showed that DHT with a temperature of 45 °C was the best in suppressing the Xag population but reduced soybean seed viability. Therefore, the optimal combination of DHT to eliminate and maintain seed viability is at 25 °C for 12 hours.

Keywords

Bacterial pustule; Germination rate; Glycine max; Seed borne; Vigor index

Full Text:

PDF(EN)

References

Amza J. 2018. Seed borne fungi; food spoilage, negative impact and their management: A review. Food Sci Qual Manag. 81:70–79.

[Indonesian Central Bureau of Statistics] Badan Pusat Statistik. 2021. Analisis produktivitas jagung dan kedelai di Indonesia 2020 (hasil survei ubinan). Jakarta (ID): Badan Pusat Statistik (BPS).

Falconí CE, Yánez–Mendizábal V. 2016. Dry heat treatment of Andean lupin seed to reduce anthracnose infection. Crop Prot. 89:178–183. https://doi.org/10.1016/j.cropro.2016.07.021.

Farooq M, Basra SMA, Saleem BA, Nafees M. 2008. Germination, seedling vigor and electrical conductivity of seed leachates as affected by dry heat treatment of tomato seeds. Acta Hortic. 771(771):43–50. https://doi.org/10.17660/ActaHortic.2008.771.5.

Fauziyah Q, Ramdan EP, Yukti AM. 2022. Deteksi bakteri patogen terbawa benih kedelai dengan metode Liquid Assay. J Agronida. 8(1):9–15. https://doi.org/10.30997/jag.v8i1.4837.

Fauziyah Q, Ramdan EP, Yulianti F. 2024. Perlakuan panas kering dan ekstrak rimpang lengkuas terhadap benih kedelai terinfeksi Xanthomonas axonopodis. J Fitopatol Indones. 20(1):15–23. https://doi.org/10.14692/jfi.20.1.17.

Febriani LY, Widajati E. 2015. Evaluation of vigor from several variable to estimate relabelling extension of rice seeds (Oryza sativa L.). Bul Agrohorti. 3(3):309–315.

Godefroid S, Van De Vyver A, Stoffelen P, Vanderborght T. 2017. Effectiveness of dry heat as a seed sterilisation technique: Implications for ex situ conservation. Plant Biosyst. 151(6):1054–1061. https://doi.org/10.1080/11263504.2016.1231140.

Habazar T, Resti Z, Yanti Y, Trisno J, Diana A. 2012. Penapisan bakteri endofit akar kedelai secara in planta untuk mengendalikan penyakit pustul bakteri. J Fitopatol Indones. 8(4):103–109. https://doi.org/10.14692/jfi.8.4.103.

[ISTA] International Seed Testing Association. 2010. International rules for seed testing. 1st ed. Zurich (CH): International Seed Testing Association.

[Indonesian Ministry of Agriculture] Kementerian Pertanian. 2020. Outlook komoditas pertanian tanaman pangan: kedelai. Susanti AA, Supriyatna A, editors. Jakarta (ID): Pusat Data dan Sistem Informasi Pertanian, Kementerian Pertanian.

Krisnawati A. 2017. Soybean as source of functional food. Iptek Tanam Pangan. 12(1):57–65.

Kurniasih K, Giyanto G, Sinaga MS, Mutaqin KH, Widajati E. 2021. Pengendalian Burkholderia glumae pada benih padi dengan perlakuan panas kering dan minyak cengkeh. J Fitopatol Indones. 16(3):123–134. https://doi.org/10.14692/jfi.16.3.123-134.

Mansour T. 2023. A new method for rapid screening of seed vigority of cereals. Open J Plant Sci. 8(1):001–004. https://doi.org/10.17352/ojps.000050.

Martín I, Gálvez L, Guasch L, Palmero D. 2022. Fungal pathogens and seed storage in the dry state. Plants. 11(22):3167. https://doi.org/10.3390/plants11223167.

Nikko, Ramdan EP, Risnawati, Sugeru H. 2023. Suppression of Xanthomonas oryzae pv. oryzae infection in rice seeds: investigating the optimal temperature and packaging conditions for enhanced pathogen control and seed quality. J Ilm Pertan. 20(2):109–117. https://doi.org/10.31849/jip.v20i2.13205.

Ramdan EP, Arti IM, Risnawati R. 2020. Evaluasi viabilitas dan patogen terbawa benih jagung pada perlakuan fisik dan kimia. Berk Penelit Agron. 8(2):16–24. https://doi.org/10.33772/bpa.v8i2.14900.

Ramdan EP, Perkasa AY, Azmi TKK, Aisyah, Kurniasih R, Kanny PI, Risnawati, Asnur P. 2021. Effects of physical and chemical treatments on seed germination and soybean seed-borne fungi. IOP Conf Ser Earth Environ Sci. 883(1):012022. https://doi.org/10.1088/1755-1315/883/1/012022.

Rofiq M, Suhartanto MR, Suharsi TK, Qadir A. 2013. Corn seed drying optimization using predrying and air drying temperature treatment. Indones J Agron. 41(3):196–201.

Rumbiak JER, Habazar T, Yanti Y. 2018. Introduksi formula rizobakteria Bacillusthuringiensis pv. toumanoffi pada tanaman kedelai untuk peningkatan ketahanan terhadap penyakit pustul bakteri (Xanthomonas axonopodispvglycines) di lapangan. J Agroekoteknologi. 10(1):24–35. https://doi.org/10.33512/j.agrtek.v10i1.5462.

Samarah N, Sulaiman A, Salem NM, Turina M. 2021. Disinfection treatments eliminated tomato brown rugose fruit virus in tomato seeds. Eur J Plant Pathol. 159(1):153–162. https://doi.org/10.1007/s10658-020-02151-1.

Sharma S, Singh V, Tanwar H, Mor VS, Kumar M, Punia RC, Dalal MS, Khan M, Sangwan S, Bhuker A, et al. 2022. Impact of high temperature on germination, seedling growth and enzymatic activity of wheat. Agric. 12(9):1500. https://doi.org/10.3390/agriculture12091500.

Shi Y, Meng S, Xie X, Chai A, Li B. 2016. Dry heat treatment reduces the occurrence of Cladosporium cucumerinum, Ascochyta citrullina, and Colletotrichum orbiculare on the surface and interior of cucumber seeds. Hortic Plant J. 2(1):35–40. https://doi.org/10.1016/j.hpj.2016.02.004.

Soni A, Parlane NA, Khan F, Derraik JGB, Wild CEK, Anderson YC, Brightwell G. 2022. Efficacy of dry heat treatment against Clostridioides difficile spores and mycobacterium tuberculosis on filtering facepiece respirators. Pathogens. 11(8):871. https://doi.org/10.3390/pathogens11080871.

Syahputra A, Hadi R. 2012. Heat application as quarantine treatment for soybean seed. J Fitopatol Indones. 8(5):145–150.

Xing M, Long Y, Wang Q, Tian X, Fan S, Zhang C, Huang W. 2023. Physiological alterations and nondestructive test methods of crop seed vigor: A comprehensive review. Agriculture. 13(3):527. https://doi.org/10.3390/agriculture13030527.

Yousof F, Ibrahim E. 2013. Effect of dry heat treatments on seed vigor and health of some rice cultivars. J Plant Prot Pathol. 4(12):1075–1088. https://doi.org/10.21608/jppp.2013.87682.

Refbacks

  • There are currently no refbacks.