Assembly of Lowland Adaptive Wheat Mutant Through Gamma Ray Mutation Induction

Dafni Mawar Tarigan, Rini Sulistiani, Wan Arfiani Barus, Sri Utami, Anggria Lestami

Abstract

Wheat is the largest cereal food in the world's staple food supply. The expansion of the wheat crop needs to be done through extensification efforts in the lowlands to increase domestic production. The main obstacles faced in the lowlands are the high air temperature and the intensity of sunlight. The research objective was to provide adaptive wheat mutant in the lowlands, especially in North Sumatra. The seeds of 3 varieties of wheat: Dewata, Basribey and G-21 were treated with gamma irradiation with a dose 100, 200, 300, 400, 500, and 600 Gy. Each treatment was repeated three times. The highest percentage of germination and vigor index due to the combination of treatment of wheat varieties with gamma rays was the combination of Dewata and 200 Gy which was significantly different from Basribey and G-21. Gamma irradiation treatment of 100 Gy on the three mutant wheat varieties showed differences in plant height, namely the G-21 variety, followed by Dewata and Basribey. The number of productive tillers showed significant variation between the gamma ray treatments for each mutant wheat genotype and the most productive tillers were at a gamma ray dose of 100 Gy for all wheat genotypes. The 100 Gy gamma ray treatment caused the number of seeds of the Dewata variety to be much higher than that of Basribey and G-21. The mutants obtained with the desired characters are the basic materials in assembling new superior varieties of wheat that are adaptive in the lowlands.

Keywords

High temperature, Irradiation, Mutant, Viability, Yield

Full Text:

PDF(EN)

References

Aisyah S, Hapsari L, Herlina D. 2005. Induced mutation on jasmine (Jasminum spp.) through gamma irradiation. J of Agriculture and Rural Development in the Tropics and Subtropics. Beheift 83: 120–127.

Amirikhah R, Etemadi N, Sabzalian MR, Nikbakht A, Eskandari A. 2021. Gamma radiation negatively impacted seed germination, seedling growth and antioxidant enzymes activities in tall fescue infected with Epichloë endophyte. Ecotoxicology and Environmental Safety. 216. https://doi.org/10.1016/J.ECOENV.2021.112169

Asare AT, Mensah F, Acheampong S, Asare-Bediako E, Armah J. 2017. Effects of gamma irradiation on agromorphological characteristics of okra (Abelmoschus esculentus L. Moench.). Advances in Agriculture, 2017. https://doi.org/10.1155/2017/2385106

Beyaz R, Yildiz M. 2017. The use of gamma irradiation in plant mutation breeding (S. Jurić (ed.)). Plant Engineering. https://doi.org/DOI: 10.5772/intechopen.69974

De Micco V, Arena C, Pignalosa D, Durante M. 2011. Effects of sparsely and densely ionizing radiation on plants. Radiation and Environmental Biophysics, 50(1), 1–19. https://doi.org/10.1007/s00411-010-0343-8

Dhakshanamoorthy D, Selvaraj R, Chidambaram A. 2010. Physical and chemical mutagenesis in Jatropha Curcas L. to induce variability in seed germination , growth and yield traits. Rom. J. Biol. Plant Biol., 55(2), 113–125.

Egli DB. 1993. Cultivar maturity and potential yield of soybean. Field Crop Res. 32(1-2): 147-158. https://doi.org/10.1016/0378-4290(93)90027-K

Erythrina, Zulkifli Z. 2017. Dinamika Penelitian Gandum di Indonesia. Balitsereal Litbang Pertanian. http://balitsereal.litbang.pertanian.go.id/wp-content/uploads/2017/01/dinamikagdm.pdf

Gaswanto R, Syukur M, Purwoko BS, Hidayat SH. 2016. Induced mutation by gamma rays irradiation to increase chilli resistance to begomovirus. AGRIVITA, Journal of Agricultural Science, 38(1), 24–32. https://doi.org/10.17503/AGRIVITA.V38I1.581

Gutschick VP. 1997. Photosynthesis, growth rate, and biomass allocation. Ecology in Agriculture, p. 39-78. https://doi.org/10.1016/B978-012378260-1/50003-8

Hong MJ, Kim DY, Jo YD, Choi HI, Ahn JW, Kwon SJ, Kim SH, Seo YW, Kim JB. 2022. Biological effect of gamma rays according to exposure time on germination and plant growth in wheat. Appl. Sci. 12, 3208. https://doi.org/10.3390/app12063208

Iglesias-Andreu LG, Octavio-Aguilar P, Bello-Bello J. 2012. Current importance and potential use of low doses of gamma radiation in forest species in gamma radiation. IntechOpen. https://doi.org/10.5772/36950

Ismael AK, Mahmoud AH. 2015. Induction of genetic variability with gamma radiation in some flowering herbs. Bioscience and Plant Biology. 2 (2349-8080), 47-54.

Jan S, Parween T, Siddiqi TO, Mahmooduzzafar X. 2012. Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environmental Reviews. 20(1): 17–39. https://doi.org/10.1139/A11-021

Jusuf M, Kasno A, Supandie D, Sumpena EDJ, Widyastuti U, Miftahudin, Hamim, Supijatno. (1993). Evaluasi plasmanutfah kedele untuk lahan kering atau ber-pH rendah serta berkualitas nutrisi baik.

Landep M, Widiastuti, Wahyuni S. 2020. Penerapan teknik invigorasi dalam meningkatkan vigor benih padi. J Penelitian Dan Pengembangan Pertanian. 39(2): 96–104. https://doi.org/10.21082/jp3.v39n2.2020.p96-104

Marcu D, Damian G, Cosma C, Cristea V. 2013. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). J of Biological Physics. 39(4): 625–634. https://doi.org/10.1007/S10867-013-9322-Z

Minisi FA, El-Mahrouk M, El-Din M, Rida F, Nasr M. 2013. Effects of Gamma Radiation on germination, growth characteristics and morphological variations of Moluccella laevis L. undefined.

Muhammad I, Rafii MY, Nazli MH, Ramlee SI, Harun AR, Oladosu Y. 2021. Determination of lethal (LD) and growth reduction (GR) doses on acute and chronic gamma- irradiated Bambara groundnut (Vigna subterranea (L.) Verdc.) varieties. J of Radiation Research and Applied Sciences. 14(1): 133-145. https://doi.org/10.1080/16878507.2021.1883320

Nur A, Syahruddin K, Marcia BP, Selatan S. 2017. Keragaman genetik gandum (Triticum aestivum L) hasil persilangan konvergen. J Penelitian Pertanian Tanaman Pangan. 1(2): 143–151. https://doi.org/10.21082/jpptp.v1n2.2017.p143-151

Praptana RH, Hermanto. 2016. Gandum: peluang pengembangan di indonesia (Wheat: development opportunities in indonesia).

Reflinur, Aviv A, Marcia BP. 2015. Genetic diversity analysis of wheat germplasm collection of indonesian cereals research institute using SSR markers. IPB International Convention Center IPB International Convention Center: 14-16. September 2015.

Setiawan RB, Khumaida N, Dinarti D. 2015. Mutation induction on embryogenic callus of wheat (Triticum aestivum L.) through gamma ray irradiation for high temperature tolerance. J. Agron. Indonesia. 43(1): 36 - 44

Sobrizal D. 2017. Potensi pemuliaan mutasi untuk perbaikan varietas padi lokal Indonesia. J Ilmiah Aplikasi Isotop Dan Radiasi. 12(1): 23–35. https://doi.org/10.17146/JAIR.2016.12.1.3198

Tarigan DM . 2017. Adaptabilitas dan stabilitas hasil beberapa genotipe gandum pada ketinggian tempat dan waktu tanam berbeda. https://repositori.usu.ac.id/handle/123456789/2871

Tarigan DM, Syofia I. 2018. Upaya meningkatkan ketahanan gandum tidak tahan rebah di dataran tinggi melalui kombinasi pupuk dengan jarak tanam. Penelitian Strategis Nasional, Universitas Muhammadiyah Sumatera Utara, Medan.

Ussuf KK, Nair PM. 1974. Effect of gamma irradiation on the indole acetic acid synthesizing system and its significance in sprout inhibition of potatoes. Radiation Botany. 14(4): 251–256. http://inis.iaea.org/Search/search.aspx?orig_q=RN:6180601

Yunita S, Khumaida N, Sopandie D, Mariska I. 2014. Effect of gamma irradiation on the growth callus and regeneration of rice variety Ciherang and Inpari 13. Jurnal AgroBiogen 10(3): 101-108.

Zaini Z, Jusuf M, Kaher A. 1991. Potential for Wheat Production in Indonesia. In D. A. Saunders (Ed.), Wheat for the Non-traditional Warm Areas. (pp. 55–64). Proc. of the International Conference, July 29 - August 3, 1991, CYMMIT, Mexico D.F.

Refbacks

  • There are currently no refbacks.