Keberadaan Mikovirus Berdasarkan Deteksi Berbasis RNA pada Colletotrichum Hipovirulen

Lulu'il Maknun, Supyani Supyani, Hadiwiyono Hadiwiyono, Budi Tjahjono


Fertilization is any effort that aims to increase the availability of nutrients needed by plants, and increase crop production. The study aimed to obtain fertilizer types, fertilizer dosages and combinations of types and dosages of fertilizers suitable for growth and yield of Crystal Guava plants. The study was conducted on October 2018 to Mei 2019 on farmer’s land, Banjarsari Kulon Village, Sumbang District, Banyumas Regency and Agronomy and Horticulture Laboratory of the Faculty of Agriculture, Jenderal Sudirman University. The experimental design used was a Randomized Completely Block Design (RCBD) with 2 factors and 3 replications. The first factor was the type of fertilizer, namely NPK, SP-36 and MKP fertilizers. The second factor was fertilizer dosage, namely 20 g / plant, 30 g / plant, 40 g / plant and 50 g / plant. Observed data were done by Analysis of Variance and if it significantly affected then DMRT (Duncan’s Multiple Range Test) was carried out at the level of 5%. The results showed that the most effective type of NPK fertilizer and dosage of 20 g / plant. The combination of NPK fertilizer with a dose of 20 g / plant was the most effective treatment for increasing the growth and yields of the Crystal Guava plant.


Hypovirulence; RNA Mycovirus; Virocontrol; Mycophage; Anthracnose

Full Text:



Abera A, Lemessa F, Adunga G. 2016. Morphological characteristics of Colletotrichum species associated with mango (Mangifera indica L.) in Southwest Ethiopia. Food Sci Qual Manag 48: 106-115.

Boland GJ. 1992. Hypovirulence and double-stranded RNA in Sclerotinia sclerotiorum. Can J Plant Pathol 14: 10–17. doi: 10.1080/07060669209500900.

Campo S, Gilbert KB, Carrington JC. 2016. Small RNA-based antiviral defense in the phytopathogenic fungus Colletotrichum higginsianum. PLoS Pathog 12(6): 1-36. doi: 10.1371/journal.ppat.1005640

Dickman MW. 1993. The fungi. New York (NY): Academic Press.

Enke R. 2016. Agarose gel & spectrophotometer analysis of total RNA extractions. CSHL DNALC RNA-Seq for the Next Generation Working Group.


Eun HM. 1996. Enzymology primer for recombinant DNA technology. San Diego (CA): Academic Press.

Farnsworth R, Keating J, Mcauley M, Smith R. 2004. Optimization of a protocol for Escherichia coli RNA extraction and visualization. J Exp Microbiol Immunol (JEMI) 5: 87-94.

Figueiredo LC, Figueiredo GS, Giancoli ACH, Tanaka FAO, Silva LAO, Kitajima EW, Filho SA, Azevedo JL. 2012. Detection of isometric, dsRNA-containing viral particles in Colletotrichum gloeosporioides isolated from cashew tree. Trop Plant Pathol 37(2): 142-145. doi: 10.1590/S1982-56762012000200007

Ghabrial SA. 2001. Fungal viruses. In: O Maloy, T Murray, editors. Encyclopedia of Plant Pathology. New York (NY): John Wiley and Sons. p: 478-483.

Ghabrial SA, Caston JR, Jiang D, Nibert ML, Suzuki N. 2015. 50-plus years of fungal viruses. Virol 479-480: 356-368. doi: 10.1016/j.virol.2015.02.034

Ikeda K, Nakamura H, Arakawa M, Matsumoto N. 2004. Diversity and vertical transmission of double-stranded RNA elements in root rot pathogens of trees, Helicobasidium mompa and Rosellinia necatrix. Mycol Res 108 (6): 626–634. doi: 10.1017/S0953756204000061

Jia H, Dong K, Zhou L, Wang G, Hong N, Jiang D, Xu W. 2017. A dsRNA virus with filamentous viral particles. Nat Commun 8(168): 1-12. doi: 10.1038/s41467-017-00237-9

Kim WG, Hong SK, Choi HW, Lee YK. 2009. Occurrence of anthracnose on highbush blueberry caused by Colletotrichum species in Korea. Mycobiol 37(4): 310–312. doi: 10.4489/MYCO.2009.37.4.310

Kumar V, Chandel S. 2016. Mycoviruses and their role in biological control of plant diseases. Internat J Plant Sci 11(2): 375-382. doi: 10.15740/HAS/IJPS/11.2/375-382

Martinez EP, Hio JC, Osorio JA, Torres MF. 2009. Identification of Colletotrichum species causing anthracnose on Tahiti lime, tree tomato and mango. Agron Colomb 27(2): 211-218.

Montri P, Taylor PWJ, Mongkolporn O. 2009. Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Dis 93(1):17-20. doi:10.1094/ PDIS-93-1-0017.

Oo MM, Oh SK. 2016. Chilli anthracnose (Colletotrichum spp.) disease and its management approach. Kor J Agric Sci 43:153-162.

Photita W, Taylor PWJ, Ford R, Hyde KD, Lumyong S. 2005. Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers 18: 117-133. doi: 10.3852/09-157.

Sahitya UL, Deepthi RS, Kasim DP, Suneetha P, Krishna MSR. 2014. Anthracnose, a prevalent disease in Capsicum. RJPBCS 5(3): 1583-1604.

Sakinah MAI, Suzianti IV, Latiffah Z. 2014. Phenotypic and molecular characterization of Colletotrichum species associated with anthracnose of banana (Musa spp) in Malaysia. Gen Mol Res 13(2): 3627-3637. doi: 10.4238/2014.May.9.5

Salim MA. 2012. Pengaruh antraknosa (Colletotrichum capsici dan Colletotrichum acutatum) terhadap respons ketahanan delapan belas genotipe buah cabai merah (capsicum annuum L). J ISTEK 6(1-2): 182-187.

Sande WWJ, Lo-Ten-Foe JR, Belkum A, Netea MG, Kullberg BJ, Vonk AG. 2010. Mycoviruses: future therapeutic agents of invasive fungal infections in humans?. Eur J Clin Microbiol Infect Dis 29(7): 755-763. doi: 10.1007/s10096- 010-0946-7.

Saxena A, Raghuwanshi R, Gupta VK, Singh HB. 2016. Chilli anthracnose: the epidemiology and management. Front Microbiol 7(1527):1-18. doi: 10.3389/fmicb.2016.01527.

Sharma M, Kulshrestha S. 2015. Morphological and pathogenicity assay of Colletotrichum gloeosporioides – an anthracnose causing pathogen of fruits and vegetables. Int J Agric Sci Res 5(4): 131-138.

Soesanto L. 2013. Pengantar pengendalian hayati penyakit tanaman. Jakarta (ID): PT. Raja Grafindo Persada.

Supyani. 2017. Mikovirus, pengembangannya sebagai agens pengendali hayati. JPTI 21(1): 1–9. doi: 10.22146/jpti.17874.

Supyani, Widadi S. 2015. Hypovirulent isolates of Fusarium collected from chili crops in Boyolali Regency, Central Java, Indonesia. Agrivita 37(1): 67-74. doi: 10.17503/Agrivita-2015-37-1-p067-074.

Than PP, Jeewon R, Hyde KD, Pongsupasamit S, Mongkolporn O, Taylor PWJ. 2008. Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathol 57: 562–572. doi: 10.1111/j.1365-3059.2007.01782.x.

Thu PQ, Griffiths MW, Pegg GS, McDonald JM, Wylie FR, King J, Lawson SA. 2010. Healthy plantations: a field guide to pests and pathogens of Acacia, Eucalyptus and Pinus in Vietnam. Queensland (AU): Department of Employment, Economic Development and Innovation.

Wang S, Ongena M, Qiu D, Guo L. 2017. Fungal viruses: Promising fundamental research and biological control agents of fungi. SM Virol 2(1):1-5.

Weir BS, Johnston PR, Damm U. 2012. The Colletotrichum gloeosporioides species complex. Stud Mycol 73: 115-180. doi: 10.3114/sim0011.

Wu M, Jin F, Zhang J, Yang L, Jiang D, Li G. 2012. Characterization of a novel bipartite double-stranded RNA mycovirus conferring hypovirulence in the pathogenic fungus Botrytis porri. J Virol 86 (12):6605–6619. doi:10.1128/JVI.00292-12.

Xie J, Jiang D. 2014. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu Rev Phytopathol 52(3): 1–24. doi: 10.1146/annurev-phyto-102313-050222.

Yu X, Li B, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Yi X, Jiang D. 2013. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proc Natl Acad Sci USA 110(4):1452-1457. doi: 10.1073/pnas.1213755110.

Zhong J, Pang XD, Zhu HJ, Gao BD, Huang WK, Zhou Q. 2016. Molecular characterization of a trisegmented mycovirus from the plant pathogenic fungus Colletotrichum gloeosporioides. Viruses 8(10): 1-12. doi:10.3390/v8100268.


  • There are currently no refbacks.