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Seawater intrusion causes salinity and waterlogging in the coastal agricultural land of 
Pangandaran, Indonesia. Both limiting factors cause a decrease in soil chemical properties. 
The decline in rice yield occurred due to the low soil chemical properties. The study aims 
to identify the soil’s chemical properties based on limiting factors and to reveal its 
relationship with rice productivity in the coastal agricultural land of Pangandaran. Soil 
sampling was conducted using a purposive sampling method, and the samples were 
analyzed in the laboratory. Various soil properties are grouped into three clusters using 
hierarchical clustering. The cluster of waterlogging high salinity has very high Na-
exchangeable with EC ranging from 0.21 - 4.93 dS m-1, while the other two clusters contain 
high Na-exchangeable and EC ranging from 0.101 - 0.581 dS m-1. Rice productivity under 
waterlogging-low salinity is <1 t ha-1, no waterlogging-low salinity is 3.63 t ha-1, and 
waterlogging-high salinity is 2.48 t ha-1. There are negative correlations between Na-
exchangeable, water depth, and duration of waterlogging to rice yield (R2= -0.33; R2= -0.58; 
R2= -0.90). Multiple stresses cause limiting factors, and low soil chemical properties can 
inhibit plant development. The presence of waterlogging-low salinity has a strong impact 
on decreasing rice yield. Finally, our study provides an overview of the coastal agricultural 
land of Pangandaran based on multiple stresses. Furthermore, improved soil properties 
are needed with good management techniques to make it suitable for rice cultivation. 
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1. INTRODUCTION 
The coastal agricultural land has many limiting factors, but 

it has the potential to be used in rice cultivation due to an 
area of 954.39 million hectares worldwide (Tang et al., 2023). 
Generally, it has low organic matter (Jia et al., 2024), as well 
as low nutrient content and cation exchange capacity (CEC) 
(Andrade et al., 2020). In addition, the coastal agricultural 
land has a high salt concentration and increased electrical 
conductivity (EC), low water retention capacity, and poor soil 
structure (Zhang et al., 2024). Furthermore, the proximity of 
the land to the sea allows sea-water intrusion to occur, 
causing puddles or floods and impacting reduced soil 
respiration (Li et al., 2022), and low soil microorganism 
activity (Helton et al., 2019). This condition will be a stress for 
plants, affecting a decrease in growth and yields reaching 18-
40% (Zhang et al., 2022).  

Pangandaran is one of the regencies in West Java, located 
in the southern coastal area. Based on data from BPS (2023), 
Pangandaran has the potential for rice production with a 
harvest area of 30.521 hectares. Nevertheless, most 
agricultural land has multiple stress constraints due to its 
location close to the coast. One of the villages, namely 
Karangjaladri, has at least 109 hectares and is located at a 
distance of 0.1 - 0.7 m from the coast, which often causes 
growth disorders and crop failure. Two stresses that occur on 
this agricultural land are salinity and waterlogging. Salinity is 
a condition of soil and water with a high salt content that 
causes an EC value of > 4 dS m-1 (FAO, 2018). Xiaoqin et al. 
(2021) stated that salinity causes a decrease in the hydraulic 
system, soil productivity, and organic matter content. Salinity 
in the soil is influenced by various factors such as agricultural 
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Figure 1. Study site in Karangjaladri Village, Parigi District, Pangandaran, Indonesia 

land vegetation, topography, climate, and sea tides (Ibarra-
Villarreal et al., 2021). Salinity can be a limiting factor and will 
decrease rice production by more than 65% (Shafi et al., 
2013).  

Waterlogging in plants is the situation when soil becomes 
saturated with water, leading to an environment with 
reduced O2 or a complete lack of O2 (Lin et al., 2024). This 
condition typically occurs in poorly drained soils, after heavy 
rainfall, or due to flooding. Furthermore, flooding and 
waterlogging on the agricultural land have a depth of more 
than 1 m. This condition causes the soil to contain low O2 
(hypoxia) (Panda & Barik, 2021), soil compaction, and poor 
drainage (Ploschuk et al., 2018). Limited O2 and high water 
volume can reduce rice yield (Anshori et al., 2023) due to low 
light interception, low soil respiration, and failure to grow 
optimally (Yang et al., 2017). Yamauchi et al. (2017) stated 
that limited O2 in the soil due to waterlogging will have an 
impact on Potassium deficiency and affect the decline in root 
development, as well as limited gas diffusion and Nitrogen 
deficiency, which contribute to rice crop failure (Kim et al., 
2024).  

In coastal agricultural land, the presence of organic matter 
in the soil is crucial, affecting the soil respiration rate (Miao et 
al., 2017). Moreover, soil respiration is influenced by the 
availability of nutrients, especially Nitrogen, temperature, 
and humidity (He et al., 2024). Generally, coastal soils have 
low fertility with a sandy texture, low potential hydrogen 
(pH), low C-organic, and high Al-exchangeable (Sigua et al., 
2016). These conditions will be a limiting factor in soil fertility 
and impact reduced rice productivity (Tian et al., 2024). Sea 
tides often occur in coastal agricultural areas, and they can 
cause multiple stresses for plants. Flooding and waterlogging 

due to sea-water intrusion affect soil compaction, decrease 
Potassium, and increase Sodium in the soil (Kumar et al., 
2021). Several studies have revealed that salinity and 
waterlogging will reduce rice production (Fukao et al., 2019; 
Win et al., 2022). Nasrudin and Kurniasih (2021) reported that 
the rice planted under the water depth of coastal areas can 
reduce photosynthetic rate, increase proline content, and 
decrease rice yield. However, the study reveals that rice 
production under multiple stress conditions is still limited.  

The chemical soil properties are crucial ways to support 
paddy cultivation in coastal agricultural land with abiotic 
stresses such as salinity and waterlogging. Therefore, at 
present, we are studying the chemical soil properties of soil 
under multiple stress conditions. As we know, coastal 
agricultural land allows for waterlogging with low salinity, no 
waterlogging with low salinity, and waterlogging with high 
salinity. Three multiple stresses certainly have different soil 
chemical properties and will affect rice production. Soil 
chemical properties evaluation under three multiple stress 
conditions is needed for information mitigation strategies to 
produce optimal rice yield. Previous studies have not 
thoroughly investigated the relationship between soil 
chemical properties and rice production under multiple stress 
conditions. Additionally, the absence of similar studies 
focused on the coastal agricultural land of Pangandaran 
underscores the significance of this study. We hypothesize 
that soil chemical properties are affected by multiple stresses 
in coastal agricultural land, and these conditions will also 
produce different rice yields. The study aims to identify the 
soil’s chemical properties based on limiting factors and to 
reveal its relationship with rice productivity in the coastal 
agricultural land of Pangandaran.   



Nasrudin et al. SAINS TANAH – Journal of Soil Science and Agroclimatology, 22(1), 2025 

14 

 

 
Figure 2. Dendrograms of hierarchical clustering in the study site 

2. MATERIAL AND METHODS 
The study was conducted from August until December 

2023 in the coastal agricultural land of Pangandaran, located 
in Karangjaladri Village Parigi District (Figure 1). The land used 
in this study was 109 hectares, and the distance from the 
coast was between 0.1 - 0.7 km. 

General information about agricultural land conditions 
used in this study is in Table 1. The classification of the study 
site is lowland (0 - 50 msl) with a land area of 109 hectares. 
Various limiting factors are due to sea tides close to the coast 
causing salinity and waterlogging. Based on some information 
about climate conditions, the agricultural area has an average 
monthly rainfall of low to high. (BMKG, 2023) records that 
average monthly rainfall is categorized as low at 0 - 100 mm 
and as high at 300 - 500 mm. 

Land clustering analysis was based on purposive sampling 
and then continued by dividing it into 20 plots. The division of 
plots used the method by FAO (2020); each plot covers an 
area ranging from 5 – 7 hectares. Furthermore, clustering is 
done using data from the direct observation method, namely 
by measuring Electrical conductivity (EC) water and soil, 
water level, and duration of waterlogging. The EC 
measurements were analyzed using the HANNA HI 98304 EC 
meter. The water level measurement was determined using a 
tape measure, and the information about the duration of 
waterlogging was collected by interviews with farmers. Based 
on the clustering analysis, three clusters were obtained, 
namely waterlogging-low salinity (plots of 4, 5, 6, and 7), no 
waterlogging-low salinity (plots of 1, 2, 3, 8, 9, and 10), and 
waterlogging-high salinity (plots of 11 until 20), as shown in 
the dendrogram in Figure 2. 

Further, soil samples were taken at each plot in a 
composite manner using five locations of diagonal sampling. 
The soil was cleaned by weeds and taken using a hoe with a 
depth of 0 - 20 cm (topsoil), as much as 1 kg, respectively, 
then composited and put into a plastic bag. Collects the soil 
sample information, including the sampling date, soil code, 
and plot coordinates. Then, soil samples were analyzed in the 
soil science laboratory of the Agricultural Instruments 
Standardization Agency of Yogyakarta. Interviews using the 
questionnaire method were conducted to collect information 
about rice cultivation and rice productivity aspects in each 
plot.  

The soil chemical properties variables observed include N-
total (%) using the Kjeldahl method, P2O5 (ppm) using the Bray 
method, cation exchange capacity (CEC) (cmol kg-1), Na-
exchangeable (cmol kg-1), K-exchangeable (cmol kg-1), Mg-
exchangeable (cmol kg-1), and Ca-exchangeable (cmol kg-1) 
using the DTPA extraction method, and exchangeable sodium 
percentage (%) using the same method of Seilsepour et al. 
(2009), and dissolved oxygen (mg L-1) using the dissolved 
oxygen analyzer DO9100.  

The clustering analysis uses the hierarchical clustering 
method and Pearson correlation to determine the 
relationship between soil chemical properties and rice 
productivity. The data are presented in the form of tables and 
dendrograms. The data analysis was performed using R Studio 
software version 4.1.3, Statistical Tools for Agricultural 
Research version 2.0.1, and Microsoft Excel.  

 

 



Nasrudin et al. SAINS TANAH – Journal of Soil Science and Agroclimatology, 22(1), 2025 

15 

Table 1. General condition of the study site 

Indicators Details 

Location Karangjaladri Village, Parigi 
District, Pangandaran 
Regency, West Java 

Altitude 0-50 meters above sea level 
Distance from the coast ± 0.1 - 0.7 km 
Average rainfall 80 - 400 mm month-1 
Average temperature 25 - 26 oC 
Land area 109 hectars 

 

3. RESULTS  
3.1.  Rice Cultivation Aspects and Limiting Factors in The 

Three Clusters 
Based on the interviews with farmers in the three clusters, 

we get some information about rice cultivation activities 
(Table 2). Generally, in clusters 1, 2, and 3, farmers cultivate 
rice on land of less than 1 hectare. The land type is rice fields, 
and the varieties used are Maros and Mawar, respectively. 
Farmers obtained rice seeds from the stores, and then the 
seeds were sowed using the dry land method. Usually, 
farmers do not add organic matter during soil processing and 
only use NPK 15:15:15 and urea fertilizers for plant nutrients.  

The land used in cultivation activities has a type of 
irrigation, namely the presence of a river that flows into the 
sea so that it is affected by tidal activity. This condition causes 
water to enter cluster 1 with poor drainage, causing 
waterlogging with a depth of up to 1.5 m. In cluster 2, we 
found this land passed by sea water from tidal activity. 
Proximity to the estuary and some located in the part after 
the barrier causes no waterlogging and the impact of low 
salinity. Furthermore, cluster 3 has two limiting factors, 
namely waterlogging and salinity, which are close to the coast 
(0.1 km).  

Based on direct observation of several limiting factors, EC 
water and soil in clusters 1 and 2 were classified as non-saline, 
whereas cluster 3 classified them as slightly saline - 
moderately saline. The categories made by FAO (2018), which 
group salinity based on EC values including 0 - 2 dS m-1 (non-
saline), 2 - 4 dS m-1 (slightly saline), 4 - 8 dS m-1 (moderately 
saline), and 8 - 16 dS m-1 (strongly saline). Other limiting 
factors on land in the three clusters are the depth and 
duration of waterlogging. Based on the observations, the 
water depth in cluster 1 has the potential to reach 1.5 m for 
336 hours, cluster 2 can reach 1 m with a duration of 0 - 48 
hours, and in cluster 3, the water depth reaches 0.5 m for 168 
hours. These various limiting factors affect the rice yield 
obtained by farmers. The data shows that the average rice 
yield in cluster 1 is < 1 t ha-1, cluster 2 is 3.63 t ha-1, and cluster 
3 is 2.48 t ha-1.  

 
3.2. Soil Chemical Properties 

Soil chemical properties can support rice growth and 
production (Suntoro et al., 2024). Soil with low chemical 
quality affects plants not being supplied with their nutritional 
needs, which causes a decrease in rice yield or crop failure 
(Rendana et al., 2021). The analysis showed that the soil  

chemical properties in the three clusters are present in Table 
3. In the waterlogging-low salinity cluster, the average pH was 
6.08, the average N-total was 0.26%, and the average P2O5 
was 12.37 ppm. Furthermore, the average exchangeable 
cations of K, Na, Mg, and Ca were 1.09 cmol kg-1, 9.13 cmol 
kg-1, 3.61 cmol kg-1, and 2.43 cmol kg-1, respectively. The 
exchangeable cations affect the CEC as an indicator of soil 
fertility that can provide essential nutrients for plants such as 
K, Mg, and Ca (Sasongko et al., 2022). The results showed that 
the average CEC was 23.55 cmol kg-1 and the average 
Exchangeable Sodium Percentage (ESP) was 41.30 cmol kg-1.  

In the waterlogging-low salinity cluster, the average pH 
was 5.88, the average N-total was 0.31%, and the average 
P2O5 was 9.11 ppm. Furthermore, in the value of 
exchangeable cations, the average K, Na, Mg, and Ca were 
2.10 cmol kg-1, 7.83 cmol kg-1, 3.31 cmol kg-1, and 2.63 cmol 
kg-1, respectively. These conditions affect the average CEC 
and ESP, which were 25.20 cmol kg-1 and 30.73 cmol kg-1, 
respectively.  

In the waterlogging-high salinity cluster that often causes 
crop failure, the average pH was 5.88, the average N-total was 
0.50, and the average P2O5 was 9.28. Additionally, the 
average concentrations of exchangeable cations in the soil 
were 1.85 cmol kg-1 for K, 15.65 cmol kg-1 for Na, 3.14 cmol 
kg-1 for Mg, and 2.96 cmol kg-1 for Ca. These conditions affect 
the average CEC and ESP, which were 20.64 cmol kg-1 and 
74.24 cmol kg-1, respectively.  

 
3.3.  Correlation among rice yield to soil chemical properties 

and limiting factors in the three clusters 

Correlation analysis to reveal the relationship between 
rice yield and soil chemical properties and limiting factors 
(Table 4). The study results illustrate that the high Na-
exchangeable is positively correlated to EC water (R2= 0.80) 
and EC soil (R2= 0.76), which indicates that the increase in Na-
exchangeable causes an increase in EC water and soil. 
Additionally, Na- exchangeable negatively correlated to Mg-
exchangeable (R2= -0.57) and rice yield (R2= -0.33), which 
illustrates that the increase in Na causes a decrease in Mg and 
rice yield. 

Furthermore, water depth negatively correlated to EC 
water (R2= -0.42), EC soil (R2= -0.36), dissolved oxygen (R2= -
0.93), and Ca-exchangeable (R2= -0.31). This condition 
indicates that water depth causes a decrease in the EC water 
and soil, dissolved oxygen, and Ca-exchangeable. Based on 
the data, water depth causes an increase in the duration of 
waterlogging (R2= 0.68) but causes a decrease in K-
exchangeable (R2= -0.35). Hence, water stress also has an 
impact on decreasing rice yield. This condition is illustrated by 
the water deeper with a longer duration negatively correlated 
(R2= -0.58) and (R2= -0.90), respectively.  

 

4. DISCUSSION 
The existence of limiting factors on agricultural land will 

affect the condition of soil chemical properties and rice yield. 
Based on the clustering analysis, we found three clusters, i.e. 
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Table 2. Information on rice cultivation aspects and limiting factors in the three clusters' area 

Indicators 
Cluster 1 

(waterlogging- 
low salinity) 

Cluster 2 
(no waterlogging- 

low salinity) 

Cluster 3 
(waterlogging- 
high salinity) 

Average land by farmers < 1 ha < 1 ha < 1 ha 

Types of irrigation Path of tidal river Path of tidal river Path of tidal river 

Limiting factors Flooding due to poor 
drainage and water level 

can reach 1.5 m 

Path of low drainage and 
potentially passable by 

tidal swamp 

High salinity and pools of 
seawater with depths up 

to 0.5 m 
EC water (dS m-1) 0.250 - 0.580 0.250 - 0.980 0.680 - 5.590 

EC soil (dS m-1) 0.126 - 0.212 0.102 - 0.528 0.112 - 4.930 

Water level (m) 1.5 1 0.5 

Duration of waterlogging (hours) 336 0 - 48 168 

Dissolved oxygen (mg L-1) 0.70 - 1.20 2.10 - 8.00 5.10 - 8.50 

Varieties Maros dan Mawar Mawar Maros dan Mawar 

Sowing process Sowing on land area Sowing on land area Sowing on land area 

Types of fertilizer NPK 15:15:15 and urea NPK 15:15:15 and urea NPK 15:15:15 and urea 

Rice yield (t ha-1) < 1 3.63 2.48 
Remarks:  Data were collected through interviews with farmers in each cluster using a questionnaire method. Additionally, data on various 

indicators, including EC in the water and soil, water level, duration of waterlogging, and dissolved oxygen, were obtained through 
direct field observation. 

 
waterlogging-low salinity, no waterlogging-low salinity, and 
waterlogging-high salinity. The limiting factors on the 
agricultural land include land crossed by tidal rivers, poor 
drainage, and strong wind. Velmurugan et al. (2016) stated 
that land close to the sea has the potential to experience 
waterlogging and salinity influenced by seawater intrusion.  

The data shows that all plots in cluster 1 are affected by 
seawater intrusion into the land, and the position of the land 
is lower than the river flow (Table 2). This condition makes it 
difficult for water to exit the land so that the water depth can 
reach 1.5 m with a duration of 336 hours. The agricultural land 
condition is lower than the river and has a great potential to 
experience flooding and disadvantages in rice production 
(Fan et al., 2024). Water depth causes a limited O2 in the soil 
and affects low soil respiration (Pampana et al., 2016). Based 
on the value of dissolved oxygen (DO) in cluster 1 being in the 
range of 0.70 - 1.20 mg L-1. The condition is also in line with 
the correlation analysis in Table 4, which illustrates that 
increasing water depth and duration of waterlogging impact 
decreasing DO. Ali et al. (2022) stated that DO with a value of 
less than 2 mg L-1 is classified as heavily polluted. Water depth 
and duration of waterlogging also influence the EC soil 
between 0.126 - 0.212 dS m-1 and EC water between 0.250 - 
0.580 dS m-1. This value belongs to non-saline soil (P. Kumar 
et al., 2024). These conditions are caused by the leaching of 
salt levels, especially when rainy reasons occur. Generally, the 
water depth reaches 1.5 m on this land during the rainy 
season due to the land type belonging to rainfed rice fields. 
So, this land has two water sources, i.e. rainwater and 
seawater intrusion. 

Rice yield on cluster 1 only produces <1 t ha-1. 
Waterlogging with a long duration causes a low rice yield and 
affects the low Ca-exchangeable. Naz et al. (2024) reported 
that low Ca will cause root dysfunction due to toxins in the 
soil. Root dysfunction due to that obstacle and limited O2 in 
the soil will make it difficult for plants to absorb nutrients that 
support their growth and production (Basu et al., 2020). This 

condition describes the CEC value as moderate, indicating 
that the soil’s ability to provide essential nutrients such as Mg, 
Ca, and K cannot be optimal. Additionally, waterlogging will 
worsen the conditions for plants to grow, such as the 
activation of the chlorophyllase enzyme, which degrades 
chlorophyll (Biswajit et al., 2017), accumulation of reactive 
oxygen species (ROS), and decreased antioxidants (Foyer, 
2018). Furthermore, based on the study by S. Kumar et al. 
(2024) reported that waterlogging for a long time and in-
depth has the potential to reduce pollen viability, which 
causes low rice yields. 

In cluster 2, there is multiple stress in the form of no 
waterlogging-low salinity. This cluster causes seawater 
intrusion into several plots close to the water inlet, but the 
receding process is relatively faster. Data shows that water 
ingress can reach 1 m, but the duration of waterlogging is fast 
moving to recede, namely 0 - 48 hours. The salt content in 
water and soil is relatively low (P. Kumar et al., 2024), which 
ranges from 0.250 - 0.980 dS m-1 and 0.102 - 0.528 dS m-1, 
respectively. 

Due to these limiting factors, the soil’s content of N-total 
and P2O5 belongs to the medium. We predict this cluster has 
slight obstacles like waterlogging and/or salinity. The content 
of N-total will affect the vegetative growth of rice plants 
(Rossatto et al., 2023), while the presence of Na-
exchangeable causes an impact on the availability of limited 
P2O5. It will reduce the energy in the form of Adenosine 
triphosphate (ATP) (Waani et al., 2021). Additionally, in the 
soil of cluster 2, Ca-exchangeable also becomes limited due 
to osmotic stress (Cheng et al., 2023). According to the 
correlation analysis between Ca and water depth (R2= -0.31). 
This process will impact the ability of plants to absorb 
nutrients and root function disorders (Peduzzi et al., 2024). 
Therefore, the average rice yield obtained in this cluster tends 
to be 3.63 t ha-1. 

  



Nasrudin et al. SAINS TANAH – Journal of Soil Science and Agroclimatology, 22(1), 2025 

17 

 

Table 3. Soil chemical properties and rice yield in three clusters area 

Cluster 1 (waterlogging-low salinity) 

Plot pH 
N-total 

(%) 
P2O5 

(ppm) 
K-exchangeable 

(cmol kg-1) 
Na-exchangeable 

(cmol kg-1) 

Mg-
exchangeable 

(cmol kg-1) 

Ca-exchangeable 
(cmol kg-1) 

CEC 
(cmol kg-1) 

ESP (%) 
Rice yield 

(t ha-1) 

4 5.78SA 0.24M 1.03VL 0.77H 9.13VH 3.42H 2.30L 28.00H 32.61VH < 1.00 
5 6.12SA 0.32M 21.65VH 1.28VH 9.57VH 3.75H 2.15L 31.00H 30.86VH < 1.00 
6 6.13SA 0.19L 5.15L 1.03VH 9.13VH 3.67H 2.55L 19.00M 48.06VH < 1.00 
7 6.30SA 0.29M 21.65VH 1.28VH 8.70VH 3.58H 2.70L 16.20M 53.68VH < 1.00 

Average 6.08SA 0.26M 12.37H 1.09VH 9.13VH 3.61H 2.43L 23.55M 41.30VH < 1.00 

Cluster 2 (no waterlogging-low salinity) 

1 5.28A 0.21M 2.06VL 3.59VH 10.43VH 3.33H 2.65L 24.00M 43.48VH 3.20 
2 5.19A 0.21M 3.09VL 3.33VH 3.04VH 3.42H 2.65L 18.70M 16.28VH 4.00 
3 5.85SA 0.23M 3.09VL 0.77H 8.26VH 3.42H 1.90VL 30.00H 27.54VH 4.00 
8 6.97N 0.53H 20.62VH 2.31VH 8.26VH 3.58H 3.90L 29.20H 28.29VH 3.80 
9 5.95SA 0.28M 15.46VH 1.54VH 8.26VH 3.33H 2.00L 24.60M 33.58VH 3.50 

10 6.06SA 0.39M 10.31M 1.03VH 8.70VH 2.75H 2.65L 24.70M 35.21VH 3.30 

Average 5.88SA 0.31M 9.11M 2.10VH 7.83VH 3.31H 2.63L 25.20H 30.73VH 3.63 

Cluster 3 (waterlogging-high salinity) 

11 6.13SA 0.46M 7.22L 1.54VH 10.43VH 2.92H 2.45L 19.50M 53.51VH 2.80 
12 6.28SA 0.36M 2.06VL 1.03VH 9.57VH 3.00H 2.80L 25.40H 37.66VH 2.80 
13 6.11SA 0.37M 15.46VH 1.54VH 5.22VH 3.67H 3.10L 22.80M 22.88VH 2.80 
14 5.98SA 0.34M 15.46VH 2.82VH 22.61VH 3.00H 3.10L 23.50M 96.21VH 2.00 
15 5.97SA 0.35M 23.71VH 2.56VH 21.30VH 2.92H 2.90L 23.40M 91.04VH 2.00 
16 5.76SA 0.40M 5.15L 2.56VH 38.70VH 2.67H 5.10L 24.40M 158.59VH 2.00 
17 6.01SA 2.09VH 1.03VL 1.28VH 13.04VH 2.50H 2.90L 20.30M 64.25VH 2.00 
18 5.73SA 0.41M 11.34H 2.82VH 20.43VH 3.00H 2.55L 22.00M 92.89VH 2.00 
19 5.52SA 0.10L 2.06VL 1.54VH 7.83VH 3.50H 2.65L 15.00L 52.17VH 3.20 
20 5.34A 0.15L 9.28M 0.77H 7.39VH 4.25H 2.00L 10.10L 73.18VH 3.20 

Average 5.88SA 0.50M 9.28M 1.85VH 15.65VH 3.14H 2.96L 20.64M 74.24VH 2.48 
Remarks:  A (Acidic); SA (slightly acid); N (neutral); VL (very low); L (low); M (medium); H (high); VH (very high). The soil criteria are based on Eviati et al. (2023). 
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Table 4. Pearson correlation among soil chemical properties, limiting factors, and rice yield 

Parameters EC-W EC-S pH N P Na K Mg Ca CEC WD D-W DO RY 

EC-W 1** 0.95** -0.16ns 0.23ns -0.01ns 0.80** 0.47* -0.51** 0.59** -0.08ns -0.42* -0.01ns 0.30* -0.17ns 

EC-S  1** -0.17ns 0.37* -0.002ns 0.76** 0.41* -0.53** 0.58** -0.09ns -0.36* 0.04ns 0.27* -0.21ns 

pH   1** 0.23ns 0.514ns -0.02ns -0.29* -0.10ns 0.26* 0.42* -0.09ns 0.09ns 0.05ns -0.19ns 

N    1** -0.14ns 0.12ns -0.08ns -0.54** 0.18ns 0.02ns -0.24ns -0.03ns 0.10ns -0.12ns 

P     1** 0.08ns 0.10ns 0.20ns 0.07ns 0.16ns -0.06ns 0.09ns 0.09ns -0.21ns 

Na      1** 0.39* -0.57** 0.68** 0.13ns -0.24ns 0.09ns 0.14ns -0.33* 

K       1** -0.26* 0.42* 0.04ns -0.19ns -0.35* 0.19ns 0.19ns 

Mg        1** -0.41* -0.24ns 0.41* 0.23ns -0.25* 0.05ns 

Ca         1** 0.13ns -0.31* -0.09ns 0.29* -0.06ns 

CEC          1** 0.09ns -0.16ns -0.15ns -0.012ns 

WD           1** 0.68** -0.93** -0.58** 

D-W            1** -0.61** -0.90** 

DO             1** 0.54** 

RY              1** 
Remarks: ns: not significant, *:  significant at α 5%, **:  significant at α 1%, EC-W: electrical conductivity in the water, EC-S: electrical conductivity in the soil, pH: potential hydrogen, N: N-total, P: P2O5, 

Na: Na-exchangeable, K: K-exchangeable, Mg: Mg-exchangeable, Ca: Ca-exchangeable, CEC: cation exchange capacity, WD: water depth, D-W: duration of waterlogging, DO: dissolved oxygen; 
RY: rice yield 
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Furthermore, multiple stress occurs in cluster 3, namely 
waterlogging-high salinity. The closeness of the rice field plot 
in cluster 3 to the sea causes seawater seepage, and the 
presence of water flow from the sea in two directions causes 
this land to experience two stresses at once. The water depth 
in this plot is not too high, but the duration can reach 168 
hours. Additionally, the EC values in water and soil are 0.680 
- 5.590 dS m-1 and 0.112 - 4.930 dS m-1, respectively. These 
values indicate the high salt content (Radanielson et al., 
2018). The presence of puddles originating from seawater for 
a long duration causes low soil respiration (Chen et al., 2022). 
This condition impacts root disorders and cannot develop 
optimally (Loudari et al., 2022). The dual stressor will worsen 
to absorb the essential nutrients that support plant growth 
and development. As we know, in salinity and waterlogging, 
plants will experience ionic, osmotic, and aeration stresses 
(Acosta-Motos et al., 2017), which will reduce rice yield.  

The various limiting factors affect other soil chemical 
properties. An increase in EC affects a rise in Na-exchangeable 
but will cause a decrease in Mg and affect plant physiological 
activity and chlorophyll formation (Gao et al., 2024). The 
decline of chlorophyll content affects the ability of plants to 
light interception for photosynthesis (Liu et al., 2022), so the 
assimilates produced will be reduced (Huanhe et al., 2024). 
The low assimilates cause low translocating activity to the 
permanent sink (Xiong, 2024), lowering the rice yield by 2.48 
tons ha-1. 

Generally, rice fields close to the sea have the potential to 
experience multiple stresses. This condition will cause 
changes in soil chemical properties and affect the decline of 
rice growth and production. This study shows multiple 
stresses in the form of waterlogging and salinity. 
Waterlogging is indicated by increasing water depth for a long 
time and the salt content in the form of EC water-soil and Na-
exchangeable. In the present study, we observed that cluster 
1 faced a limiting factor in the form of prolonged 
waterlogging, resulting in a harvest of <1 ton ha-1. In contrast, 
cluster 2 exhibited no apparent limiting factors, with a harvest 
yield of 3.63 tons ha-1. In cluster 3, salinity and waterlogging 
become limiting factors, leading to a harvest yield of only 2.48 
tons ha-1. Regarding the soil's chemical properties, no 
significant differences were observed across the three 
clusters. However, certain chemical properties, such as Na 
and EC required a decrease, while Ca needed to be increased. 
Additionally, the pH tended to be acidic across all clusters.  

Based on our study, the coastal agricultural land of 
Pangandaran has several limiting factors, including salinity 
and waterlogging, that contribute to fluctuations in EC values, 
water levels, and the duration of waterlogging. Some of these 
variations are attributed to seasonal influences. These 
conditions render certain soil properties less conducive to rice 
cultivation, resulting in decreased harvest yield. We 
recommend further study focused on enhancing soil quality 
through organic ameliorants. Additionally, it is crucial to 
implement effective strategies for managing irrigation and 
drainage to prevent prolonged waterlogging. 

 
 
 

 5. CONCLUSION 
The coastal agricultural land of Pangandaran, covering an 

area of 109 hectares, is categorized into three clusters based 
on distinct limiting factors. Cluster 1 is characterized by 
waterlogging-low salinity, cluster 2 by the absence of 
waterlogging and low salinity, and cluster 3 by waterlogging-
high salinity. The soil chemical properties across all three 
clusters exhibit minimal variation, with all having slightly acid 
pH, low Ca-exchangeable, and high Na-exchangeable. In 
cluster 1, prolonged waterlogging results in a harvest yield of 
less than 1 ton ha-1. In contrast, cluster 2, which lacks 
significant limiting factors, produces the highest harvest yield 
at 3.63 tons ha-1. In cluster 3, the combination of high salinity-
waterlogging produces a harvest yield of 2.48 tons ha-1. These 
findings indicate that limiting factors such as salinity and 
waterlogging influence soil chemical properties and 
significantly impact crop yield. 
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