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The loss of topsoil in high-rainfall regions significantly reduces agricultural productivity, 
especially in degraded soils. This study investigated the effects of Mixed Fertilizer-
Conditioner (MFC) on improving the chemical properties of subsoil cultivated with red chili 
peppers. A Randomized Block Design (RBD) with 11 treatments on subsoil and one control 
on normal soil was implemented, with three replications. The treatments included: A= 
subsoil without fertilizer, B= 0% MFC + full NPK, C= 25% MFC + full NPK, D= 50% MFC + full 
NPK, E= 75% MFC + full NPK, F= 100% MFC + full NPK, G= 50% MFC + 75% NPK, H= 50% 
MFC + 50% NPK, I= 50% MFC + 25% NPK, J= 50% MFC without NPK, and K= Full NPK on 
normal soil. The application of 100% MFC combined with full NPK significantly enhanced 
subsoil chemical properties. Soil organic carbon increased to 1.32%, pH rose to 6.3, CEC 
reached 22.1 cmol kg⁻¹, and base saturation improved to 49.4%. Nutrient availability also 
increased, including total N (1.21%), P (0.132%), K (0.677 cmol kg⁻¹), along with Ca (1362.72 
ppm), Mg (311.04 ppm), and S (36.01 ppm). Micronutrients B, Co, and Zn also rose to 4.41 
ppm, 18.95 ppm, and 11.97 ppm, respectively. Chili yields in subsoil treated with 50–100% 
MFC and full NPK exceeded 10 tons ha⁻¹. These results highlight the agronomic potential 
of MFC for rehabilitating degraded soils and recommend its use as a sustainable strategy 
to enhance soil fertility in low-fertility or erosion-prone areas, with implications for both 
farmers and agricultural policymakers. 
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1. INTRODUCTION 
Agriculture is a critical sector in the global economy, 

particularly in the production of horticultural commodities. 
However, land degradation poses a significant challenge to 
sustaining agricultural productivity, especially in tropical 
regions with high rainfall, such as Indonesia (Setyawan et al., 
2019), India (Bhattacharyya et al., 2015), Brazil (Anache et al., 
2018), Vietnam (Huynh et al., 2020), Thailand (Neyret et al., 
2020), and Malaysia (Vijith et al., 2018). Topsoil loss due to 
erosion has become a pressing concern, and in countries like 
Indonesia, the over-exploitation of topsoil by industries such 
as brickmaking has further accelerated soil fertility decline. 
Subsoil, which often replaces the eroded topsoil layer, 
generally exhibits poorer chemical properties than topsoil. 
Consequently, the loss of topsoil leads to a marked reduction 

in soil fertility, characterized by lower nutrient availability, 
reduced cation exchange capacity (CEC) (Fang et al., 2017), 
decreased base saturation (Fonseca et al., 2017), and 
diminished organic carbon content (Angst et al., 2018). 
Collectively, these changes result in significantly reduced crop 
yields (Gomes et al., 2019; Lal, 2018; Mandal et al., 2021).  

In recent years, subsoil has increasingly been considered 
as an alternative planting medium in regions experiencing 
severe topsoil depletion. Particularly in tropical developing 
countries, excavated subsoil—commonly left unused after 
activities such as mining, construction, or brick-making 
activities—represents a vast yet underutilized resource 
(Makau, 2021; Ning et al., 2022). Although its inherent fertility 
is low, appropriate amendments and conditioning strategies 
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have the potential to restore its productivity (Armstrong et al., 
2021; Tavakkoli et al., 2019). Therefore, research on subsoil 
rehabilitation is critical for expanding arable land availability 
without the need to convert additional forested areas. 

Currently, the treatment of subsoil from excavation 
residues is largely carried out by increasing organic matter 
inputs, particularly through the application of compost. The 
use of compost has been shown to positively influence soil 
physical, chemical, and biological properties. Research by 
Cooper et al. (2020) demonstrated that the application of 
compost to soil significantly increases organic carbon, which 
in turn improves the cation exchange capacity (CEC) and base 
saturation (Bouajila et al., 2023). Additionally, Bremaghani 
(2024) reported that compost derived from agricultural waste 
effectively enhances the availability of nutrients in the soil. 
Similarly, Rahman et al. (2020) found that other organic 
materials, such as biochar and humus, also contribute to soil 
quality improvement by increasing organic carbon and 
enhancing the retention of macro- and micronutrients. While 
these findings underscore the crucial role of organic 
amendments in soil rehabilitation, current strategies often 
emphasize soil improvement alone, tend to overlook their 
direct effects on plant nutrient uptake. The application of a 
dual treatment approach, combining liquid organic matter 
applied both to soil and as a foliar spray, remains rarely 
explored. In fact, this combination could yield more optimal 
results, since foliar application can enhance nutrient 
absorption when the soil’s buffering capacity is limited. 

To address this gap, the present study introduces the use 
of Mixed Fertilizer-Conditioner (MFC), a liquid organic 
fertilizer enriched with humic acid and organic compounds. 
MFC functions both as a soil conditioner and as a source of 
readily available mineral nutrients for plants. According to 
Ren et al. (2022) and Pukalchik et al. (2019), humic acid 
enhances the physical, chemical, and biological properties of 
the soil by increasing organic carbon content, CEC, and base 
saturation, thereby improving the soil’s ability to retain and 
supply essential nutrients. Additionally, MFC facilitates 
nutrient uptake through both root uptake and absorption. 
Foliar application has been found to be particularly effective 
for micronutrients such as zinc and boron (Tyagi et al., 2025). 
Herawati et al. (2021) reported that combining humic acid 
with ameliorants significantly increased soil organic carbon 
(SOC), CEC, and phosphorus availability in poor sandy soils, 
thereby confirming the role of organic-mineral amendments 
in improving subsoil fertility. Moreover, Syamsiyah et al. 
(2023) reported positive correlations between rising organic 
carbon content and increases in both CEC and base 
saturation, confirming that enhanced organic matter leads to 
improved nutrient retention and soil fertility. 

To assess the agronomic response of MFC, red chili pepper 
(Capsicum annuum) was selected as the test crop. This 
species is widely cultivated across Southeast Asia and holds 
significant importance due to its economic value (Karyani et 
al., 2020) dietary relevance as a source of vitamins, 
antioxidants, and capsaicinoids (Olatunji & Afolayan, 2018), 
and sensitivity to nutrient availability and soil 
fertility (Khaitov et al., 2019). In Indonesia, red chili is not only 
a staple horticultural commodity but also plays a critical role 

in supporting smallholder farmers’ household income 
(Karyani et al., 2020; Olutumise, 2022) and contributes to 
national food price stability. Moreover, chili plants display 
high physiological responsiveness to both macro- and 
micronutrient supply (Massimi & Radocz, 2021), as well as to 
soil amendments and environmental stressors, making them 
a suitable indicator species for evaluating soil conditioning 
treatments on degraded or marginal soils. Therefore, the 
study aimed to evaluate the effectiveness of MFC in 
improving subsoil chemical properties and enhancing the 
growth and yield of red chili pepper (Capsicum annuum) 
under degraded soil conditions. 

 

2. MATERIALS AND METHODS 
2.1. Formulation of Mixed Fertilizer-Conditioner (MFC) 

The formulation of MFC in this study involved a 

combination of cow manure with particle sizes of 1–2 

microns, liquid fertilizer derived from the fermentation of 

vegetable and fruit waste rich in essential nutrients, liquid 

humic acid, and the addition of several mineral components 

including (NH₄)₂SO₄, mono potassium phosphate (MKP), KCl, 

CaSO₄, MgSO₄, CuSO₄, and boric acid. These components 

were selected to improve the quality of subsoil, which was 

evaluated based on several chemical properties as indicators 

of soil fertility. The concentration of each component was 

adjusted based on the nutrient content of the raw organic 

materials and the target nutrient levels to be achieved in the 

final formulation. For instance, if the initial nitrogen content 

of the organic waste was 0.5% and the target concentration 

was 1.5%, additional nitrogen was supplied using a calculated 

amount of urea (46% N) or (NH₄)₂SO₄ (21% N) to meet the 

deficit. This flexible formulation approach allows the MFC to 

be tailored according to the nutrient profile of site-specific 

organic waste sources, ensuring consistency in performance 

despite variability in raw material composition. 

The MFC production process began with the preparation 

of raw materials, including vegetable and fruit waste for the 

fermentation process. This stage followed the standard 

method for producing liquid organic fertilizer, utilizing 

Lactobacillus sp. bacteria as the primary inoculant due to its 

known ability to accelerate organic matter decomposition 

and produce beneficial organic acids (Amrullah et al., 2021). 

The fermentation substrate consisted of 60% fruit and 

vegetable waste and 40% water by volume, supplemented 

with 4% molasses (Ramadhani et al., 2022) as a carbon source 

to stimulate microbial activity. The mixture was placed in an 

anaerobic fermenter and incubated at ambient temperature, 

25–35°C (López-Rubio et al., 2025) for 14-28 days to ensure 

optimal microbial proliferation and nutrient solubilization 

(Lerma-Moliz et al., 2025; Sofyan et al., 2025). Subsequently, 

cow manure was oven-dried to reduce moisture content to 

below 20%, then ground using a colloid mill to achieve 

particle sizes of 1–2 micrometers, which enhances surface 

area and nutrient release efficiency. The fine manure was 

then mixed with the fermented liquid fertilizer and liquid 

humic acid in a 4:2:1 ratio, creating a stable matrix for the 

subsequent addition of mineral nutrients.  
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Table 1. Parameters for MFC formula analysis and their methods. 
No. Parameter Methodology 

1 C-organic Walkley & Black 
2 Impurities Sorting and screening 
3 Heavy Metals  
 As (Arsenic) Wet oxidation HNO3+ HCIO4, AAS-Hydride 
 Hg (Mercury) Wet oxidation HNO3+ HCIO4, AAS-Hydride Cold Vapor 
 Pb (Lead) and Cd (Cadmium) Wet oxidation HNO3+ HCIO4, AAS 

4 pH Electrometry, pH meter (1:5) 
5 Total Nutrients  
 N (Nitrogen) Kjeldahl, titrimetric 
 P2O5 (Phosphorus) Wet oxidation HNO3 + HCIO4, molybdenum-blue, spectrometry 
 K2O (Potassium) Wet oxidation HNO3 + HCIO4, AAS- flame photometry 

6 Contaminant Microbes  
 E. Coli and Salmonella sp. Most Probable Number (MPN) 

7 Microelements  
 Fe (Iron), Mn (Manganese), Cu (Copper), Zn (Zinc), 

Co (Cobalt), Mo (Molybdenum)  
Wet oxidation HNO3 + HCIO4, AAS 

 B (Boron) Wet oxidation HNO3 + HCIO4, Azomethine-H, spectrometry 

Source: Wogi et al. (2021). 
 
The mixture was allowed to ferment for an additional 7 

days. Following this, the mineral components were added, 
and the mixture was homogenized using a mechanical stirrer 
for half a day. After achieving homogeneity, the MFC 
concentration was adjusted according to the research 
requirements, and nutrient content analysis was conducted 
to validate the accuracy of the product formulation before 
application. The analysis methods for the nutrient content of 
the MFC formulation are presented in Table 1. 
 

2.2. Field application 
2.2.1. Preparation  

The subsoil used in this study was collected from Garut 
Regency, Indonesia (approximately 7°10′57″ S, 107°59′43″ E; 
elevation 707 m above sea level/asl), an area previously 
exploited for the red brick production. The subsoil was 
characterized by a neutral pH, low organic carbon content 
(0.79%), low C/N ratio (5.64), low total nitrogen (0.14%), very 
low available phosphorus (2.76 ppm), low potassium (0.29 
cmol.kg⁻¹), low CEC (16.14 cmol.kg⁻¹) and low base saturation 
(20.33%). In contrast, the normal soil was collected from an 
actively cultivated and productive chili farmer’s field. Both the 
subsoil and normal soil were placed in polybags with a 10 kg 
soil capacity. During the preparation and incubation of the 
organic fertilizer as a basic treatment, red chili seeds were 
sown in a screen house for 16 days before being transplanted 
into the polybags. 

The materials used in this study included UNPAD CB 2 
seeds, chicken manure, rice husks, and subsoil obtained from 
excavation residues of red brick production. Pest control was 
managed with yellow adhesive paper, carbofuran-based 
nematicides, profenofos-based insecticides, propineb-based 
fungicides, and metaldehyde-based molluscicides. The tools 
employed consisted of seedling trays, planting and 
maintenance equipment, and instruments for soil and plant 
tissue analysis. Data processing and statistical analysis were 
performed using computer software to ensure the accuracy 
and reliability of the results. 

2.2.2. Experimental design 
The study was conducted in the experimental field of the 

Faculty of Agriculture, Universitas Padjadjaran, from 
September 2023 to February 2024, located at an altitude of 
740 m asl, with an average annual rainfall of 1800 mm, 
temperatures ranging from 28°C to 31°C, and humidity levels 
of 46% to 52%. A simple randomized block design (RBD) was 
used, consisting of 11 treatments involving different 
concentrations of MFC Plus and varying doses of N-P-K 
fertilizer. Each treatment was replicated three times. Each 
experimental unit consisted of two sampling groups: one 
group of plants was uprooted at the vegetative stage for 
nutrient uptake analysis, while the remaining plants were 
maintained until harvest for yield measurement. 

The treatments included control and various MFC Plus 
concentrations ranging from 0% to 1%, combined with full, 
¾, ½, ¼, and 0 doses of N-P-K fertilizer. The purpose of this 

design was to evaluate the effects of these combinations on 

the chemical properties of subsoil and crop yield. This 

approach allowed for a comprehensive assessment of both 

nutrient uptake during the growth phase and final yield 

performance, aiming to determine the optimal combination 

of MFC Plus and N-P-K to enhance soil fertility and increase 

productivity in subsoil conditions. The details of the 

treatment combinations are presented in Table 2. 
The application of MFC Plus was carried out via two 

methods: soil drenching and foliar spraying. MFC was applied 

to the soil at the base of the plant during early growth stages 

to improve subsoil properties and nutrient retention, while 

foliar application was performed at the vegetative and early 

flowering stages to enhance nutrient absorption efficiency, 
particularly for micronutrients. 

The determination of soil conditioner dosage was based 
on the target increase in soil organic carbon (SOC) (Eq. 1) 
because it serves as an indicator closely related to other soil 
fertility indicators such as pH and CEC.
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Table 2. Combination of MFC and N-P-K treatments. 

No Treatment 
MFC 

(ml/polybag) 
N-P-K (g/polybag) 

Urea SP-36 KCl 

1 A=Control  0.0 0 0 0 
2 B=0% MFC +1 N-P-K 0.0 13.24 9.93 13.24 
3 C=25% MFC + 1 N-P-K 250 13.24 9.93 13.24 
4 D=50% MFC + 1 N-P-K 500 13.24 9.93 13.24 
5 E=75% MFC + 1 N-P-K 750 13.24 9.93 13.24 
6 F=100% MFC + 1 N-P-K 1000 13.24 9.93 13.24 
7 G=100% MFC + 3/4 N-P-K 1000 9.93 7.44 9.93 
8 H=100% MFC + 1/2 N-P-K 1000 6.62 4.96 6.62 
9 I=100% MFC + 1/4 N-P-K 1000 3.31 2.48 3.31 

10 J=100% MFC + 0 N-P-K 1000 0.00 0.00 0.00 
11 K=1 N-P-K normal soil 0.0 13.24 9.93 13.24 

Notes: Description: One dose of N-P-K refers to the standard (recommendation) dosage commonly applied by local farmers 
(200-150-200 kg ha-1 with plant population 15,111). The dose of MFC was calculated based on the required 
concentration for each treatment. 

 
Table 3. Soil and plant tissue analysis method. 

No Sample Type Parameter Unit Methodology 

1 Soil pH - Electrometry, pH meter (1:5) 
2 Soil Organic Carbon (OC) % Walkley & Black 
3 Soil Organic Matter Content % OM = Organic-C × 1.724 (Van Bemmelen factor) 
4 Soil Cation Exchange Capacity 

(CEC) 
cmoI/k

g 
Wet oxidation with HNO3 + HCIO4 Titration 

5 Soil Base Saturation (BS) % Wet oxidation with HNO3 + HCIO4 Titration 
6 Soil and Plant Tissue Nitrogen (N) % Kjeldahl Method 
7 Soil and Plant Tissue Phosphorus (P2O5) % Molybdenum Blue, Spectrophotometry 
8 Soil and Plant Tissue Potassium (K2O)  Flame Photometry 

Source: Motsara and Roy (2008); Soil and Plant Analysis Council Inc. (2018). 
 

Initial SOC content (Ci) = 0.79% 
Organic carbon (OC) content in MFC (Cm)= 16.65 % = 166.5 g 
Density of organic amendment (ρ) = 1 g/ml (assumed) 

ΔC = 
OC in MFC

Total weight (medium)
 x 100 .......................................... [1] 

ΔC = 
166.5 g

10000 kg
 

ΔC = 1.665 % rounding decimals to 1.67 % 
Each 1 liter of MFC was assumed to increase soil organic 
carbon content by up to 1.67 %. 

 
2.2.3. Sampling method 

Random sampling was conducted to select red chili plants 
from each treatment for vegetative observations, including 
stem diameter and the number of productive branches. The 
selected plants for vegetative analysis were chosen randomly 
to ensure unbiased sampling across treatments. Stem 
diameter was measured using a vernier caliper, while the 
number of productive branches was counted manually. A 
total of three plant samples were selected from each 
treatment. In addition to vegetative observations. 
Destructive sampling for plant tissue analysis, was conducted 
at 42 days after transplanting (DAT), by uprooting the entire 
plant, including roots, stems, and leaves. All parts of the 
sampled plant were used for nutrient analysis, without 
separating specific plant organs. The remaining plants, not 
used for destructive sampling, were maintained for the 
observation of yield parameters. These included fruit length, 

weight, and diameter, which were recorded at each harvest 
from the second to the fifth harvest. Total yield was 
determined by accumulating the weight of all harvested fruits 
throughout the study. 

 
2.2.4. Analysis 

The collected data were analyzed using analysis of 

variance (ANOVA) at the 5% significance level. When 

significant differences among treatments were detected, 

Duncan’s Multiple Range Test (DMRT) at the 5% level was 

applied to separate the means. Whole plants were harvested 

for nutrient content analysis, using the parameters and wet 

destruction methods described in Table 3. 

 

3. RESULT 
The observations in Table 4 show that the formulation of 

the MFC meets the standards set by the Indonesian Ministry 

of Agriculture, both in terms of nutrient content and safety. 

The OC content, which reaches 16.65%, far exceeds the 

minimum threshold of 10%, indicating that this MFC 

formulation has the potential to enrich the soil with much-

needed organic matter, particularly for improving subsoil 

conditions, which are typically poor in organic content. In 

addition, the content of nutrients such as N, P₂O₅, and K₂O—

3.47%, 5.73%, and 5.50%, respectively—also complies with the 

Ministry of Agriculture standards (N-P-K in the range of 2-6%).  
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Table 4. The results of the MFC formulation analysis are compared to the minimum technical requirements set by the 
Indonesian Ministry of Agriculture regulations. 

No Parameter Unit Result Technical Requirement* 

1 Organic Carbon (OC) % 16.65 min 10 
2 Impurities % -  
3 Heavy Metals    
 Arsenic (As) ppm <0.01 As max 5.0 

Hg max 0.2 
Pb max 5.0 
Cd max 1.0 

 Mercury (Hg) ppm <0.01 
 Lead (Pb) ppm <0.01 
 Cadmium (Cd) ppm <0.01 

4 pH - 5.54 4-9 
5 Total Nutrients    
 Nitrogen (N) % 3.47 N+P+K 2-6 
 Phosphorus (P2O5) % 5.73 
 Potassium (K2O) % 5.50 

6 Contaminant Microbes    
 Escherichia coli MPN Negative Negative 
 Salmonella sp. MPN Negative Negative 

7 Microelements    
 Iron (Fe) ppm 413.53 90-900 
 Manganese (Mn) ppm 366.71 25-500 
 Copper (Cu) ppm 448.12 25-500 
 Zinc (Zn) ppm 521.15 25-500 
 Cobalt (Co) ppm 17.51 25-500 
 Molybdenum (Mo) ppm 2.71 2-10 
 Boron (B) ppm 84.65 12-250 

Source: Ministry of Agriculture of the Republic of Indonesia (2019). 
 
This demonstrates that MFC not only acts as a soil 

conditioner but also provides essential nutrients to support 
the growth of the red chili pepper plant. 

In terms of safety, the heavy metal contents (Table 4), 
such as As, Hg, Pb, and Cd, are all below the maximum limits 
allowed by the Ministry of Agriculture, confirming the safety 
of MFC for agricultural use without the risk of hazardous 
contamination. Additionally, micronutrient levels, including 
Fe, Mn, Cu, Zn, and B (84.65 ppm), fall within the acceptable 

range of 12–250 ppm, meeting the technical standards for 
nutrient content. 

3.1. Soil chemical properties 
3.1.1. Organic carbon and organic matter content 

The results (Table 5) indicate that the combination of MFC 
with N-P-K treatment significantly improves the quality of 
subsoil from brick excavation, as evidenced by increased 
organic carbon percentage and organic matter content.  
 

Table 5. Effects of MFC and NPK treatments on changes in organic carbon and organic matter content 

Treatment A B C D E F G H I J K 

Color 
formed 

           
Fig. 1a Fig. 1b Fig. 1c Fig. 1d Fig. 1e Fig. 1f Fig. 1g Fig. 1h Fig. 1i Fig. 1j Fig. 1k 

% Organic 
carbon 

0.71 0.72 0.81 0.89 1.13 1.32 1.05 0.90 0.87 0.85 1.71 

Organic 
Matter (%) 

1.22 1.24 1.40 1.53 1.95 2.27 1.81 1.55 1.50 1.46 2.95 

Notation a a ab b cd d cd b b ab e 
Criteria Poor Poor Poor Poor Low Low Low Poor Poor Poor Low 

Description: The mean values followed by the same letter do not significantly differ based on the Duncan multiple range test 
at the 5% level. Figures 1a to 1k illustrate the differences in soil sample color based on variations in organic carbon 
content after treatment during oxidation using K₂Cr₂O₇ and H2SO4. The organic matter content was calculated by 
multiplying the measured organic carbon value by a factor of 1.724, following the Van Bemmelen conversion 
method. 
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(a) (b) 

  

(c) (d) 

Figure 2. (a) General soil fertility variables, including pH, organic carbon, CEC, and base saturation, (b) Primary macronutrient 
content (N, P, and K) under various treatments, (c) Secondary nutrient content (Ca, Mg, and S), (d) Micronutrient content, 

including B, Cu, and Zn in soil. 
 
The best results were obtained with 50%, 75%, and 100% 

MFC combined with a full dose of NPK (treatments E, F, and G), 
which increased organic matter content to 1.95%, 2.27%, and 
1.88%, respectively. These values were close to the positive 
control of normal soil with NPK (treatment K, 2.95%). Visually, 
the test tube solution of treatment F exhibited a bright green 
color, indicating a high organic matter content compared to 
treatments with lower MFC doses or no MFC. The soil color 
variations observed in Figures 1a–1k served as qualitative 
confirmation of organic carbon differences, in line with 
standard Walkley-Black rating categories (values were 
categorized as very low when < 0.20%, low at 0.21–0.40%, and 
very high when > 1.00%). Colors were not used quantitatively, 
but correlated well with the measured % organic carbon values 
(Meersmans et al., 2009). Combinations of higher MFC doses 
with reduced NPK levels (G, H, I, J) still showed better results 
than the negative control (A). These confirm that MFC, 
particularly in high doses, is effective for rehabilitating subsoil 
and improving its quality, even with partial NPK reduction.  

 
3.1.2. Soil base saturation, CEC, pH, and soil nutrients 

The application of MLC combined with NPK resulted in 
significant improvements in base saturation, cation exchange 
capacity (CEC), and pH of subsoil (Figure 2a). Treatments with 

increasing MFC doses from 25% to 100% combined with the 
full NPK dose (C to F) consistently increased base saturation 
up to 49.1% (treatment F) and CEC up to 12.5 cmol/kg. 
However, the base saturation levels were still higher in 
normal soil, while CEC and pH values in the treated subsoil 
were comparable to those in normal soil.  

Macronutrients (Figures 2b and 2c), treatment F yielded 
the highest levels of N (1.14%), P (0.102%), and K (0.637%) 
compared to other treatments, approaching the values 
observed in normal soil (K). Additionally, increases in Ca and 
Mg were recorded in treatment F, reaching 1,362.72 ppm and 
311.04 ppm, respectively, indicating improved soil capacity to 
support plant growth. 

In Figure 2d, micronutrients such as B, Cu, and Zn also 
showed notable increases. Treatment K (positive control) 
resulted in the highest Zn content of 18.72 ppm, followed by 
the treatments G, F, and E at 12.51 ppm, 11.97 ppm, and 1189 
ppm, demonstrating that the application of MFC effectively 
enhances the availability of essential micronutrients in the soil. 
The availability of B and Cu in treatment F was also higher 
than in the negative control (A), further indicating improved 
quality of subsoil from brick excavation. In contrast, the 
application of MFC independently or in combination with 
excessively low doses of N-P-K was insufficient to significantly 
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improve the subsoil. In contrast, the application of MFC 
independently or in combination with excessively low doses 
of N-P-K was insufficient to significantly improve the subsoil 

 

3.2. Plant nutrient content (plant tissue analysis) 
The effect of using MFC on the nutrient content and dry 

weight of red chili pepper plant tissues showed significant 
differences across all parameters among treatments (Table 
6). The content of N was the highest in treatment F (3.12%), 
not different from E, G, and K treatments, significantly 
outperforming other treatments. This indicates improved 
nitrogen mineralization and availability due to MFC 
application, contributing to vegetative growth and 
chlorophyll synthesis. Similarly, P content peaked in 
treatments F and E, respectively (1.13% and 1.02%), showing 
higher values than the negative control, although still lower 
than the positive control (normal soil). The lowest P content 
was observed in treatment J (0.59%), reflecting the role of 
MFC in enhancing P availability for root development and 
energy transfer. 

The levels of K were highest in treatment F (1.66%), 
indicating effective enhancement of CEC and potassium 
retention in the subsoil. Ca and Mg content also improved, 
with the highest Ca recorded in treatment E (0.76%) and Mg 
in treatment F (0.45%). Micronutrient levels, including Cu and 
B, followed a similar trend, with the highest Cu concentration 
in treatment F (5.85 ppm) and Boron in treatment K (382.94 
ppm). Dry weight, an integrative indicator of biomass 
accumulation, was the highest in treatment F (69.12 g), 
significantly exceeding other treatments. This suggests that 
the balanced nutrient profile provided by the MFC directly 
contributed to improved productivity in red chili pepper 
cultivation. 

The macro- and micronutrient uptake (Figure 3) in red chili 
pepper demonstrated a strong correlation with tissue 
nutrient content and plant dry weight, as shown in Figure 3. 
Treatment F (1.0% MFC + 1 dose N-P-K) consistently resulted 
in the highest uptake of N, P, and K, each supporting vegetative 
growth, root development, and osmotic balance, respectively. 
Additionally, micronutrient uptake, such as Cu and B, was also 
the highest in treatments F and K, corresponding to Cu (5.85 
ppm) and B (382.94 ppm) content in plant tissues.  

 

 
(a) 

 

 

 

 
(b) (c) 

Figure 3. (a) Macronutrient uptake in various treatments, (b) Cu uptake, and (c) B uptake (mg/plant) in various treatments. 
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Table 6. Nutrient content in plant tissue and dry weight under different treatments. 

Treatment 
Content in plant tissue Dry weight 

(g/plant) N (%) P (%) K (%) Ca (%) Mg (%) S (%) Cu (ppm) B (ppm) 

A 1.01 a 0.54 a 0.84 a 0.25 a 0.14 a 0.11 a 0.95 a 130.28 a 28.13 a 
B 1.67 ab 0.72 ab 1.22 ab 0.42 b 0.24 b 0.19 ab 1.25 ab 206.48 b 44.52 b 
C 1.78 ab 0.90 ab 1.28 ab 0.44 b 0.25 b 0.20 ab 3.15 b 243.45 bc 52.67 c 
D 2.49 b 0.93 ab 1.43 b 0.62 c 0.36 bc 0.28 b 4.55 bc 310.59 c 57.83 cd 
E 3.04 c 1.02 b 1.57 bc 0.76 d 0.43 c 0.34 c 5.20 cd 324.06 cd 65.11 de 
F 3.12 c 1.13 b 1.66 c 0.78 d 0.45 c 0.35 c 5.85 d 378.51 d 69.12 e 
G 2.77 bc 0.84 ab 1.28 ab 0.69 cd 0.40 c 0.31 bc 4.37 bc 339.26 cd 51.44 c 
H 2.08 b 0.71 ab 1.04 ab 0.52 bc 0.30 bc 0.23 ab 3.73 b 264.55 bc 48.84 bc 
I 1.81 ab 0.63 ab 0.92 a 0.45 b 0.26 b 0.20 ab 3.67 b 242.62 bc 39.62 ab 
J 1.26 ab 0.59 a 0.72 a 0.31 ab 0.18 a 0.14 a 0.95 a 199.71 b 30.59 ab 
K 2.98 bc 1.85 c 1.11 ab 0.74 d 0.43 c 0.33 bc 1.25 ab 382.94 d 61.25 d 

Description: The mean values followed by the same letter do not significantly differ based on the Duncan multiple range test 
at the 5% level. 

 
Table 7.  Yield response of red chili pepper in various treatments of the concentration of MFC with NPK doses. 

Treatment 
Fruit weight per plant 

(g) 
Fruit weight 

(g) 
Fruit length 

(cm) 
Fruit circumference 

(cm) 

A Control (without fertilizer) 143.4 a 6.21 a 5.2 a 0.9 a 
B 0 % MFC + 1 N-P-K 309.9 bc 10.33 c 9.6 c 1.4 c 
C 0.25 % MFC + 1 N-P-K 369.6 c 10.56 c 8.3 bc 1.4 c 
D 0.50 % MFC + 1 N-P-K 499.4 cd 9.08 bc 9.4 c 1.6 d 
E 0.75 % MFC + 1 N-P-K 504.71 d 12.31 e 7.3 ab 1.8 e 
F 1.00 % MFC + 1 N-P-K 494.52 cd 12.28 e 11.5 d 1.5 cd 
G 0.5 % MFC + 3/4 N-P-K 426.36 cd 11.22 d 9.3 c 1.4 c 
H 0.5 % MFC + 1/2 N-P-K 345.84 c 10.48 c 8.9 bc 1.2 b 
I 0.5 % MFC + 1/4 N-P-K 294.72 bc 9.21 bc 8.2 bc 1.2 b 
J 0.5 % MFC + 0 N-P-K 196.88 b 8.56 b 7.7 ab 1.1 ab 
K 1 N-P-K on normal soil 497.60 cd 12.44 e 10.0 cd 1.4 c 

Description:  Numbers followed by the same letter are not significantly different based on the Duncan multiple range test at 
the 5% level. 

 
These results confirm that the application of MFC at the 

optimal dose not only enhances tissue nutrient content but 
also improves nutrient uptake efficiency, contributing to 
increased biomass and overall plant productivity in subsoil 
from excavation sites. 

 

3.3. Yield 
The application of MFC combined with N-P-K significantly 

improved several yield components (Table 7), including fruit 
weight, length, and circumference. Treatments with higher 
MFC concentrations, such as 0.75% MFC + 1 N-P-K (treatment 
E) and 1.00% MFC + 1 N-P-K (treatment F), resulted in fruit 
weights of 12.31 g and 12.28 g, which were comparable to the 
normal soil treatment (12.44 g). 

Fruit length and circumference were also enhanced, with 
treatment F producing the longest fruit (11.5 cm) and 
treatment E showing the largest circumference (1.8 cm). 
These results indicate that the combination of MFC and N-P-
K enhances nutrient availability, improving fruit development 
by promoting cell expansion and elongation. The observation 
of fruit length and diameter showed significant differences 
among treatments. The improvement in soil chemical 
properties, including increased organic carbon, CEC, base 
saturation, and nutrient availability in soil, positively 
influenced chili pepper yield. Treatments with 0.5%, 0.75%, 

and 1.0% MFC combined with a full dose of NPK (D, E, and F) 
resulted in optimal yields, comparable to those grown on 
normal soil. This suggests that the restoration of key soil 
properties through MFC and N-P-K application enhances 
nutrient availability and uptake, leading to improved red chili 
growth on subsoil from former clay brick industrial land. 

The application of MFC combined with N-P-K significantly 
improved the yield and visual quality of chili peppers, aligning 
with the enhancements observed in individual fruit 
components, such as fruit weight, length, and circumference 
(Table 7). Treatments with higher MFC concentrations, 
like 0.75% MFC + 1 N-P-K (E) and 1.00% MFC + 1 N-P-K (F), 
produced the highest yields of 10.21 t ha-1 and 10.01 t ha-1, 
respectively, comparable to the normal soil in the K treatment 
(10.07 t ha-1) (Table 8). These treatments also resulted in 
visually superior fruits (visual appearance, Table 8)—uniform 
in size, straight, and vibrant red—meeting market standards. 
In contrast, the control without fertilizer (A) yielded the 
lowest results (0.88 t ha-1) with inferior fruit quality. 

The regression analysis results (Figure 4(a-h)) indicate a 
strong relationship between the uptake of macro- and 
micronutrients and the yield of red chili peppers. Nitrogen (N) 
uptake exhibited the highest correlation with yield, as 
evidenced by an R² value of 0.8662, followed by calcium (Ca) 
with R² = 0.8626, sulfur (S) with R² = 0.8722, and magnesium 
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(Mg) with R² = 0.8647. Potassium (K) uptake also showed a 
positive effect on yield with an R² value of 0.654, while 
phosphorus (P) uptake, although significant, demonstrated a 
lower correlation with yield (R² = 0.4815). Among 
micronutrients, boron (B) uptake showed a strong correlation 

with yield (R² = 0.8201), whereas copper (Cu) uptake had a 
weaker correlation (R² = 0.4542). These data confirm that 
nutrient uptake efficiency, particularly of N, Ca, S, Mg, and B, 
plays a critical role in enhancing crop yield.  

 

 
Table 8. Effect of MFC application on the yield and visual appearance of red chili pepper. 

Treatment Yield (t ha-1) Visual appearance 

A Control (without fertilizer) 0.88 a 

 

B 0 % MFC + 1 N-P-K dose 6.27 abc 

 

C 0.25 % MFC + 1 N-P-K dose 7.48 bc 

 

D 0.50 % MFC + 1 N-P-K dose 10.11 d 

 

E 0.75 % MFC + 1 N-P-K dose 10.21 d 

 

F 1.00 % MFC + 1 N-P-K dose 10.01 d 

 

G 0.5 % MFC + 3/4 N-P-K dose 8.63 c 

 

H 0.5 % MFC + 1/2 N-P-K dose 7.00 bc 

 

I 0.5 % MFC + 1/4 N-P-K dose 5.96 b 

 

J 0.5 % MFC + 0 N-P-K dose 3.98 ab 

 

K 1 N-P-K on normal soil 10.07 d 

 

Description: Numbers followed by the same letter are not significantly different based on the Duncan multiple range test at 
the 5% level. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 4. Correlation between nutrient uptake (N, P, K, Ca, Mg, S, Cu, B) and yield of red chili pepper (t ha-1) under different 
fertilizer treatments. 

 

4. DISCUSSION 
Research has demonstrated that the application of a 

combination of MFC and N-P-K significantly improves subsoil 
quality, nutrient uptake, and the yield of red chili peppers. 

Subsoil generally has low organic matter content (Antony et 
al., 2022), and an inadequate supply of available nutrients 
(Osman, 2018). Such soil conditions require organic 
conditioners that provide carbon sources and nutrient supply, 
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helping to improve soil quality and address these deficiencies. 
The increase in carbon and organic matter content in Table 5 
and Figure 1 is attributed to the decomposition process, 
wherein microbial activity breaks down organic compounds 
into simpler substances, such as organic acids. This process is 
followed by humification, which produces stable organic 
compounds like humic and fulvic acids that enrich soil organic 
carbon. By the end of the observation period, organic matter 
mineralization had progressed further, resulting in the 
accumulation of carbon in more stable forms, which 
significantly contributed to the increased organic matter 
content in subsoil treated with MFC. Additionally, the 
improved soil condition facilitated greater nutrient 
availability and uptake by plants, as evidenced by increased 
concentrations of nitrogen, phosphorus, potassium, and 
micronutrients such as zinc and boron in plant tissue. These 
findings are consistent with earlier studies by Gill et al. (2008) 
and Fang et al. (2021), which showed that deep incorporation 
of organic amendments into sodic subsoils significantly 
improves soil chemical and physical properties, enhances 
nutrient uptake, and ultimately increases crop yield—with 
wheat yields in degraded subsoil systems reported to rise by 
20–60%. 

Other soil properties, such as base saturation, CEC, pH, 
and the availability of macro- and micronutrients, also 

improved (Figure 2a). This mechanism occurs because MLC 

provides base cations derived from the decomposition of 
organic waste and added mineral materials. Furthermore, 
active organic compounds such as humic and fulvic acids 

enhance CEC through negative charges that bind base cations 

and improve soil buffering capacity by balancing soil 
reactions and pH. The negative charges in MFC organic 

compounds, like other organic conditioners, are attributed to 

their chemical formula (C6H10O5)n, primarily derived from –
COOH functional groups, which act as the main carbon 

source. Carboxylate and phenolic groups can increase soil 
cation exchange capacity (CEC) and produce organic colloids 
with a high surface area (Ikbel et al., 2015). Additionally, 
several elements from added mineral materials supply 

essential nutrients, including base cations such as K+, Na+, 
Ca2+, and Mg2+, which are available in the soil solution to 

improve soil base saturation. Recent studies emphasize that 
the addition of mineral amendments significantly increases 

the concentration of exchangeable base cations (Suswati, 
2023), leading to higher base saturation and enhanced soil 
fertility, particularly in acidic or weathered soils. Similarly, El-
Desoky et al. (2018) and Yuniarti et al. (2018) reported a 
significant rise in exchangeable K⁺, Na⁺, Ca²⁺ , and Mg²⁺and 
base saturation following the application of weathered 
volcanic ash as a soil ameliorant in tropical soils. Treatments 

with MFC and reduced N-P-K doses (G to J) still showed 

improvements compared to the control, but were less 

effective than the full-dose MFC and N-P-K combination 

(treatment F). Furthermore, MFC alone was insufficient for 
optimal subsoil improvement without the support of 
inorganic fertilizers. Overall, the combination of MFC and N-
P-K has been proven to enhance subsoil quality, but the 

appropriate proportion is necessary to achieve optimal 
results. 

Beyond soil properties, evaluating nutrient uptake 
efficiency by plants is crucial in assessing the impact of MFC 
application on subsoil (Table 6 and Figure 3), as this directly 
influences crop yield. The positive impact of organic 
materials, particularly MFC, on nutrient absorption is 
supported by previous studies, which highlight their role in 
improving degraded soil fertility and enhancing plant nutrient 
uptake (Lal, 2018). The indirect effects of organic materials on 
nutrient uptake start with improved soil structure and greater 
nutrient retention, leading to increased crop productivity on 
degraded soils. Additionally, the supplementary nutrient 
absorption provided by foliar applications of liquid nutrients 
further enhances nutrient uptake efficiency, especially in 
addressing deficiencies (Havlin et al., 2005; Kannan, 2010; 
Tejada & Gonzalez, 2004). This is due to the direct 
penetration of MFC nutrients into plant tissues without 
undergoing secondary processes in the soil, where nutrients 
might otherwise bind to soil sorption complexes (Rosmarkam 
& Yuwono, 2001). 

Effective nutrient absorption significantly impacts plant 
growth and yield (Table 7 and Table 8). Nutrient sufficiency 
directly contributes to various physiological processes in 
plants (Pandey, 2018), including photosynthesis, protein 
synthesis, and tissue formation (Karthika et al., 2018). 
Essential macronutrients such as N are crucial for chlorophyll 
formation, which enhances photosynthetic efficiency 
(Massimi et al., 2023) and promotes vegetative growth 
(Vadillo et al., 2024) as well as generative development 
leading to harvest (Gokkus, 2025). Phosphorus (P) plays a role 
in energy transfer via ATP (Sriwantoko et al., 2020), Potassium 
(K) regulates osmotic pressure and nutrient transport in 
plants (Wang & Wu, 2017). Micronutrients such as zinc (Zn) 
(Umair Hassan et al., 2020), copper (Cu) (Mir et al., 2021), and 
boron (B) (Seth & Aery, 2017) support enzymatic and 
hormonal activities that influence fruit formation and yield 
quality (Manas et al., 2014; Salim et al., 2019; Turhan et al., 
2021). Increased nutrient availability through MFC 
application has been proven to enhance the growth and yield 
of red chili plants. 

This mechanism is reflected in the increased yield of red 
chili peppers, where treatments with MFC and N-P-K 
combinations resulted in higher yields, more uniform fruit 
length and diameter, and improved shape. These visual 
characteristics indicate optimal maturity levels and high 
commercial quality. Research shows that MFC use can 
enhance yield components such as fruit weight and size, 
ultimately leading to higher yields and improved fruit quality. 
Therefore, the combination of MFC and N-P-K not only 
improves soil quality but also significantly influences plant 
physiological processes, resulting in red chili peppers with 
optimal visual appearance. These findings are aligned with 
prior research indicating that combining humic substances 
with conventional fertilizers significantly improves chili 
performance. Foliar application of humic acid has been shown 
to enhance plant growth, fruit weight, diameter, and total 
yield in Capsicum annum. Jan et al. (2020) reported significant 
increases in fruit weight and size following humic foliar 
sprays. Similarly, Ichwan et al. (2022) demonstrated that chili 
plants treated with a mixture of humic acid and NPK exhibited 
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superior soil fertility, nutrient availability, and yield compared 
to treatments without humic acid, with an optimal 
combination of 25% humic acid + 75% NPK yielding the best 
results 

The uptake of specific macro- and micronutrients directly 
influences physiological processes that are essential for crop 
development and productivity. The strong correlation (Figure 
4) between nitrogen uptake and yield highlights the critical 
role of nitrogen in promoting vegetative growth and 
chlorophyll synthesis (Muhammad et al., 2022), which 
ultimately enhances photosynthetic efficiency and biomass 
accumulation (Chen et al., 2018). Similarly, the significant 
correlations observed for calcium, sulfur, and magnesium 
uptake reflect their contribution to structural integrity, 
enzymatic activity, and energy metabolism within the plant. 
Calcium is particularly important for cell wall stability and 
membrane function (Thor, 2019), which supports robust fruit 
development (Gao et al., 2019), while sulfur and magnesium 
are key components in amino acid synthesis (Narayan et al., 
2023) and chlorophyll structure, respectively (Pranckietiene 
et al., 2020). The moderate correlation of potassium uptake 
indicates its role in regulating osmotic balance and nutrient 
translocation, although with variability depending on 
environmental conditions (Sardans & Peñuelas, 2021). The 
relatively lower correlation of phosphorus suggests that while 
essential for energy transfer, its uptake may be more 
influenced by soil chemistry and availability (Sharpley & 
Halvorson, 2020). Boron’s strong correlation with yield 
underscores its role in reproductive growth (Zeist et al., 2018) 
and fruit set (Salim et al., 2019), whereas the weaker 
association for copper suggests that, although necessary for 
enzymatic functions, its contribution to yield may be limited 
under the tested conditions (Adhikari et al., 2016). Overall, 
the data emphasize that optimizing the uptake of key 
nutrients through balanced fertilization strategies is vital for 
improving yield outcomes in red chili cultivation. However, 
further research is needed to evaluate these relationships 
under different soil types and environmental conditions, 
which represents a limitation of this study. 
 

5. CONCLUSION 
The use of MFC proved effective in improving several 

chemical properties of subsoil, as reflected by increases in 
organic-C content, base saturation, CEC, and soil pH. 
Application of MFC, either alone or in combination with NPK, 
enhanced soil structure and improved its ability to store and 
supply essential nutrients through the action of active organic 
compounds. The study also showed that combining MFC with 
optimal NPK doses (100% MFC + ¾ to 1 recommended NPK 
dose) led to more efficient nutrient uptake by plants, thereby 
supporting key physiological processes such as 
photosynthesis and tissue formation. This improvement 
directly contributed to higher yields of red chili peppers, both 
in terms of fruit weight and visual quality. Thus, integrating 
MFC with NPK not only improves the quality of degraded 
subsoil but also enhances chili productivity and harvest 
quality, making it a strategic approach for managing marginal 
soils in sustainable agricultural systems. 
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