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The accurate estimation of soil organic carbon stocks (SOCs) is crucial in sustainable oil 
palm plantation management. Pedotransfer functions (PTFs) serve as an essential 
predictive tool for enhancing the interpretation and estimation of soil organic carbon stocks 
(SOCs) and soil porosity. This study aims to improve the precision of SOCs and soil porosity 
predictions across diverse soil types within oil palm plantations through the application of 
PTFs. The study was conducted using a survey approach and descriptive exploration in an 
oil palm plantation in Seruyan District, Central Kalimantan. The study area encompassed 
four distinct soil types (Alfisols, Inceptisols, Ultisols, and Entisols), with six replicates for 
each soil type. Soil samples were collected from a depth of 0–60 cm. Statistical analyses 
included ANOVA, Tukey’s pairwise comparisons, correlation, and stepwise regression. The 
results indicated that soil types within oil palm plantations did not significantly affect SOCs 
but significantly impacted soil porosity. SOCs and porosity estimated using PTFs were lower 
than those estimated without PTFs. Specifically, SOCs analysis with PTFs ranged from 3.4 to 
7.1 kg m-²; without PTFs, the range was higher, between 8.1 and 10.9 kg m-². Among the 
soil types, Entisols exhibited higher porosity with PTFs (51.3%), while Ultisols had the 
lowest porosity (37.9%). The PTFs provide better predictions for SOCs and porosity, and 
predictor variables that contribute the most are sand, silt, bulk density (BD), and cation 
exchange capacity (CEC). PTFs provide an advanced, data-driven approach to assessing 
SOCs and soil porosity in oil palm plantations, supporting the development of smarter, 
sustainable, and highly efficient management strategies.  
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1. INTRODUCTION 
Soil plays a pivotal role in capturing and storing carbon, 

serving as both a crucial reservoir and a dynamic source of 
energy for diverse ecosystems (Rodrigues et al., 2023). 
Carbon storage in the soil has a greater impact on climate 
mitigation and change compared to atmospheric carbon 
(Dharumarajan et al., 2021). The importance of carbon stock 
in mitigating climate change is closely linked to biomass 
fixation, organic matter transformation and decomposition, 
and soil carbon mineralization, all of which are influenced by 
soil organic matter (SOM) composition, texture, and structure 
(Dewi & Nurhutami, 2023; Fekete et al., 2023). SOC Stock 
(SOCs) is a crucial resource in supporting many ecosystem 

services (ES) through its role in nutrient cycling, soil stability, 
soil biodiversity, erosion vulnerability, climate change 
mitigation, and productivity (Juhos et al., 2024), SOCs can 
enhance water availability and the water-holding capacity of 
soil (Abdallah et al., 2021), and water availability is directly 
related to soil porosity. SOC determines the availability of 
micropores in the soil, which is a measure of soil productivity 
(Kibet et al., 2022). Water holding capacity and soil water 
potential are determined by soil pore size, which is directly 
related to soil texture (Waite et al., 2019) 

The quantity of SOCs found in soil is determined by its 
inherent properties, environmental aspects like depth, slope, 
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and precipitation, as well as land management strategies 
(Hairiah et al., 2020). To achieve accurate SOC 
measurements, it is essential to consider these contributing 
factors (Nguemezi et al., 2021). Most previous research has 
focused on the impact of land use and environmental 
variability on SOCs (Jakšić et al., 2021; Tang et al., 2022; 
Tayebi et al., 2021). Variations in soil texture influence the 
distribution and retention of SOCs (Nishigaki et al., 2021). 
Accurate measurement of SOCs and soil porosity is crucial for 
establishing sustainable land management strategies for oil 
palm cultivation. Given that oil palm is grown across diverse 
soil types, these variations in texture must be carefully 
considered. Specifically, oil palm plantations in Central 
Kalimantan, Indonesia, encompass a diverse range of soil 
classifications, including Ultisols, Inceptisols, Entisols, 
Histosols, and Oxisols, predominantly characterized by loamy 
sand, sandy loam, and sandy textures (Rini et al., 2023; 
Sukarman et al., 2022). Failure to account for these textural 
differences when assessing SOCs and porosity may lead to 
inaccurate estimations (Wenzel et al., 2022). Consequently, 
PTFs serve as essential tools to mitigate potential biases in 
measurement. Pedotransfer Functions (PTFs) were used to 
develop a model that enhances the prediction of BD and SOCs 
in topsoil (0–20 cm) across the European Union and the 
United Kingdom, contributing to more precise large-scale soil 
modeling (S. Chen et al., 2024). 

The oil palm plantation industry in Indonesia has 
experienced significant expansion, particularly on the islands 
of Sumatra and Kalimantan (Syahza & Asmit, 2020). According 
to Kementan (2023) Central Kalimantan has emerged as the 
leading palm oil producer within Kalimantan, achieving an 
average yield of approximately 4.52 tons per hectare, 
amounting to a total production of 8,642,508 tons across 
1,912,526 hectares. While the development of oil palm 
plantations contributes positively to the economic growth of 
smallholder farmers and national revenue, it also presents 
several environmental challenges (Apresian et al., 2020). The 

conversion of forested land into oil palm plantations 
accelerates the release of CH4 and CO2 into the atmosphere, 
exacerbating greenhouse gas emissions (Cooper et al., 2020; 
Wan Mohd Jaafar et al., 2020). The increase in CO2 emissions 
by oil palm plantations is 0.01577 Gt CO2 C yr⁻¹ (Wan Mohd 
Jaafar et al., 2020). Moreover, CH4 absorption rates in mineral 
soils within oil palm plantations (85 µg m⁻² h⁻¹ CH4) are 
substantially lower compared to forest soils (300 µg m⁻² h⁻¹ 
CH4) (Drewer et al., 2021). These environmental concerns 
directly conflict with Sustainable Development Goals (SDGs) 
13 and 15, which emphasize climate change mitigation and 
the preservation of terrestrial ecosystems.  

Accurate soil organic carbon stock (SOCs) data is essential 
in oil palm plantations to guide land management, reduce CO2 
emissions, and ensure sustainable productivity. Pedotransfer 
functions (PTFs) enhance SOCs estimation by utilizing existing 
data, such as bulk density and organic carbon, efficiently, 
minimizing effort, time, and costs (Bagnall et al., 2022; Van 
Looy et al., 2017). Reliable PTFs with low error rates are 
critical for policy decision-making (Arbor et al., 2023). Bulk 
density, expressed in g cm⁻³ or Mg m⁻³, is calculated as the 
soil’s dry weight divided by its total volume, including particle 
and pore spaces (Schillaci et al., 2021). It serves as an 
indicator of porosity (Qin et al., 2022), water availability, and 
SOCs levels (dos Reis et al., 2024). Extensive research has 
utilized PTFs to improve the accuracy of SOCs assessment 
estimates by correcting for organic carbon content and bulk 
density (S. Chen et al., 2024; Palladino et al., 2022; Ziviani et 
al., 2024). The application of PTFs has been demonstrated to 
enhance measurement precision and reduce potential errors 
in bulk density calculations, a critical determinant of SOCs 
levels (Do et al., 2024). Previous studies have examined land 
degradation neutrality through the use of carbon 
sequestration pedotransfer functions across various land use 
and land cover classifications in humid tropical regions 
(Chidozie et al., 2021).  

 

 
Figure 1. The manuscript layout highlights the significance of evaluating SOCs and porosity using PTFs in oil palm plantations. 



Tinuntun et al. SAINS TANAH – Journal of Soil Science and Agroclimatology, 22(1), 2025 

233 

As PTFs’ estimations are inherently location-specific 

(Schiedung et al., 2022) and derived from existing analytical 

datasets, further research is required to refine estimation 

methodologies across different soil types within Central 

Kalimantan’s oil palm plantations. Therefore, this study aims 

to: (1) assess SOCs and soil porosity using models that 

incorporate PTFs and those that do not; and (2) determine the 

key soil parameters that influence SOCs and soil porosity 

across varying soil types within oil palm plantations in Central 

Kalimantan, Indonesia. The manuscript layout, which 

emphasizes the importance of evaluating SOCs and porosity 

using PTFs in oil palm plantations, is presented in Figure 1. 

 

 

2. MATERIAL AND METHODS 
2.1. Soil Sampling 

The research was conducted in Asam Baru Village, Danau 
Seluluk District, Seruyan Regency, Central Kalimantan, with 
coordinates 2°26'26" S – 112°15'43" E, annual rainfall of 2,342 
mm, and a flat slope gradient. The survey used a descriptive 
explorative approach and a purposive sampling method to 
determine the sampling points (Fig. 2). Purposive sampling is 
an efficient method for capturing variability sources with a 
limited sample size, tailored to specific research needs 
(Ariyanto et al., 2021; Dong et al., 2021). Soil sampling was 
conducted by describing the soil profile (De Feudis et al., 
2022) to a depth of 60 cm, and topsoil and subsoil horizons 
were taken from oil palm plantation land with four different 
soil types: Inceptisols, Entisols, Ultisols, and Alfisols (each 
with 6 replications). 

 
Figure 2. Map of sampling location 
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2.2. Data Collection and Analysis 
The correction factors in PTFs applications encompass a 

variety of soil parameters such as pH H2O, pH KCl, organic 
carbon (C-org), bulk density (BD), particle density (PD), soil 
texture (silt, sand, clay), elevation, cation exchange capacity 
(CEC), and microbial carbon (C-mic) (Khan & Chiti, 2022). 
These parameters were measured using standardized 
methods: pH with a pH meter (Hale et al., 2020), soil texture 
through the pipette method (Igaz et al., 2020), bulk density 
via gravimetry (Hikouei et al., 2021) and particle density using 
a pycnometer (Santos et al., 2022). CEC was determined by 
NH4OC extraction (Nel et al., 2023), organic carbon with the 
Walkley-Black method (Mustapha et al., 2023), and microbial 
carbon through fumigation and extraction (Bertozzi et al., 
2020). These measurements play a crucial role in refining PTFs 
equations and improving prediction accuracy. 

 

2.3. Pedotransfer Functions for C-org 
The PTFs equation that corrects C-org to produce Cref is 

expected to be used on various types of mineral soils in oil 
palm plantations to estimate SOC stock. The Cref equation is 
the corrected C-org shown in Equations 1 and 2 by Hairiah et 
al. (2020).  

𝐶𝑟𝑒𝑓 = 0.9 × ((Dlow 0.705 − Dup 0.705)/((0.705 × (Dlow −

Dup))) × EXP(A)  ................................................. [1] 

A = 1.333 + 0.00994 ×  Clay% + 0.00699 ×  Silt% − 0.156 ×
 pH + 0.000427 ×  Elev + 0.834 ×  Andisol? + 0.363 ×

 Wetland?  ................................................................. [2]  

With Dlow representing lowermost soil depths and Dup 
representing the uppermost (cm), pH with pH KCl, Elev for 
elevation (masl), and Andisol? and Wetland? have a value of 
1, if Andisol and Wetland are found at the research location. 
clay% and silt% particles are obtained from soil texture 
analysis. 
 

2.4. Pedotransfer Functions for Bulk Density 
The corrected bulk density (BDref) uses a texture-based 

PTFs that consists of silt, sand, and clay. The PTFs equation 
results estimate BD for the available C-org in soil with specific 
textures. The BDref equation by Hairiah et al. (2020) is shown 
in Equation 3. 

Sand Size is the average particle size of sand (default 290), 
the value of organic matter in the soil (1.7 × C-org), and 

Topsoil with a value of 0 or 1. The results of the soil 
characteristic analysis used as correction factors are shown in 
Table 2. 

𝐵𝐷𝑟𝑒𝑓 = IF ((Clay% + Silt%) < 50; 1/((−1.984 + 001841 ×
 1.7 ×  C − org + 0.032 ×  Topsoil? +0.00003576 ×
 (Clay% + Silt%)) + 67.5/( SandSize +  0.424 ×
 LN(SandSize) )); 1/((0.603 + 0.003975 ×  Clay% +
 0.00207 × (1.7 ×  C − org)2 +  0.01781 ×

 LN(1.7 ×  C − org)) )  ........................................... [3] 

2.5. Determination of SOC Stocks (SOCs) 
Each sampling point's SOCs (kg m-2) are calculated using 

Equation 4. The research location has minimal rock presence, 
so it can be ignored in this equation. The SOCs equation is 
shown in Equation 4 (Suleymanov et al., 2023). 

SOCs = (SOC ×  BD × D)/10  ......................................... [4] 

where SOCs is SOC stock; SOC is the organic carbon 
content in %; BD is bulk density, g cm-³; D is the layer 
thickness; and 10 is the conversion factor from ton ha¹ to kg 
m-². In the PTFs equation, SOC will be replaced with Cref and 
BD with BDref as shown in Equation 5. This substitution aims 
to determine the extent to which SOCs values are corrected 
using the PTFs equation. Then, the SOCs assessment results 
will be classified based on the classification by Burghardt et 
al. (2018), as presented in Table 1. 

SOCs_ref = (SOC ×  BDref × D)/10 .............................. [5] 
 

2.6. Determination of Soil Porosity 
Soil porosity is assessed twice using different models (Eq. 

6 & 7). The first model uses the parameters BD and PD 
without any corrected factors, and the second model replaces 
BD with BDref as the corrected factor from PTFs. The equation 
used to assess porosity is based on the research by Rahayu et 
al. (2020). 

 
Table 1. Classification of SOC stock (SOCs) 

No. SOCs (kg m-2) Class 

1 <2 Very low 
2 2-4 Low 
3 4-8 Moderate 
4 8-16 High 
5 16-24 Very High 
6 >24 Extremely 

Table 2. Soil properties in different soil types 

Remarks: * = significant; ** = very significant; numbers followed by the same letter in the same row show no significant 
difference with the level of 5% 

Soil Type pH H2O pH KCl Clay % Silt % Sand % 
Elevation 

(masl) 
CEC 

(cmol(+) kg-1) 
C-mic 
(µ g-1) 

 Mean ± Standard Deviation 

Inceptisol 5.92a±0.30 4.80a±0.01 26.00ab±16.54 20.93ab±13.62 53.07ab±24.07 95.38b±42.3 16.91b±4.46 
0.24ab±0.13 

 

Entisol 6.30a±0.61 4.66a±0.65 16.97a±8.83 13.77a±13.77 69.27b±16.33 70.85ab±22.43 11.19a±4.77 
0.19a±0.05 

 

Ultisol 6.20a±0.05 4.28a±0.01 18.21ab±0.10 27.52ab±2.52 54.28ab±2.73 49.55a±2.68 15.56ab±2.01 
0.28ab±0.07 

 
Alfisol 6.23a±0.20 4.66a±0.15 34.74b±34.74 30.27b±5.28 34.98a±16.20 61.50ab±3.83 13.07ab±1.70 0.37b±0.06 

p-value 0.305 0.083 0.045* 0.028* 0.018* 0.024* 0.048* 0.012* 
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Porosity (%) = (1 − (
BD

PD
) × 100%  ...............................  [6] 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦_𝑟𝑒𝑓 (%) = (1 − (
BDref

PD
) × 100%  .................... [7] 

 

2.7. Statistical Analysis 
Statistical analysis was performed using Minitab Statistical 

software 22 and RStudio 4.2.2, including One-Way ANOVA 
(Analysis of Variance) with independent factors being soil 
type and the dependent factor being soil characteristic traits. 
If significant, it is followed by Tukey's pairwise comparisons 
test (p < 0.05). The relationships between soil properties are 
determined using Pearson's correlation. Stepwise regression 
determines the most accurate model for estimating SOCs and 
porosity. 

 

3. RESULTS  
3.1. Soil and Environmental Characteristics 

The soil type in oil palm plantations significantly (p < 0.05) 
affects soil properties, including clay, silt, sand, elevation, 
CEC, and C-mic. However, it does not significantly (p > 0.05) 
influence pH H2O and pH KCl (Table 2). The pH H2O ranges 
from 5.92 to 6.3, while the pH KCl ranges from 4.28 to 4.80. 
Clay content in the soil is significantly influenced by soil type, 
with the highest values observed in Alfisols (34.7%), which 
differ significantly from Entisols (16.9%) but not from 
Inceptisols (26%) and Ultisols (18.2%). This pattern is 
consistent with the silt content, where Alfisols have the 
highest values. These are not significantly different from 
Ultisols and Inceptisols, but they do differ significantly from 
Entisols. In contrast, Entisols exhibit the highest sand content, 
which is significantly different from Alfisols. Soil type also 
significantly (p<0.05) affects CEC and C-mic. The highest CEC 
is observed in Inceptisols (16.9 cmol kg⁻¹), showing no 
significant difference from Ultisols and Alfisols, whereas the 
lowest CEC is found in Entisols. Similarly, the highest C-mic is 
seen in Alfisols (0.37 µg g⁻¹), and the lowest is in Entisols (0.19 
µg g⁻¹), with no significant difference from Ultisols and 
Inceptisols. 

 

3.2. Pedotransfer for C-organic 
Soil type does not significantly affect (p > 0.05) C-org and 

Cref (Table 3). Uncorrected C-org has a higher concentration, 
ranging from 1.47% to 1.86%, compared to Cref, which ranges 
from 0.77% to 1.09%. C-org values for Inceptisols (1.86%) are 
not significantly different from Alfisols (1.63%), Ultisols 
(1.56%), and Entisols (1.63%), with the order being Inceptisol 
> Alfisol > Ultisol > Entisol. After correction, resulting in Cref, 
while differences are not significant, there is a change in the 
order of carbon concentration for each soil type to Inceptisol 
> Entisol > Ultisol > Alfisol, with Cref values of 1.09%, 0.98%, 
0.93%, and 0.77%, respectively (Table 3). The Cref value for 
Entisols is 53% lower than the C-org value, and other soil 
types also show reductions ranging from 33% to 41%. 

 

3.3. Pedotransfer for Bulk Density 
Soil type does not significantly affect (p > 0.05) BD but 

significantly affects (p < 0.05) Bdref (Table 4). Uncorrected BD 
values are lower, ranging from 1.18 to 1.27 g cm-3, compared 
to BDref values, which range from 1.26 to 1.32 g cm-3.  

Table 3. Means of C-org and Cref for different soil types 

Soil Type C-org, % Cref, % 

 Mean ± Standard Deviation 

Inceptisol 1.86a±0.55 1.09a±0.48 

Entisol 1.47a±0.91 0.98a±0.70 

Ultisol 1.56a±0.49 0.93a±0.31 

Alfisol 1.63a±0.17 0.77a±0.11 

p-value 0.71 0.70 

Remarks: numbers followed by the same letter in the same 
row show no significant difference at the level of 
5% 

 
Table 4. Means of BD and BDref for different soil types 

Soil Type BD, g cm-3 BDref, g cm-3 

 Mean ± Standard Deviation 

Inceptisol 1.19a±0.09 1.26ab±0.17 

Entisol 1.18a±0.09 1.27ab±0.12 

Ultisol 1.27a±0.05 1.32a±0.22 

Alfisol 1.18a±0.07 0.99b±0.20 

p-value 0.16 0.02* 

Remarks: numbers followed by the same letter in the same 
row show no significant difference at the level of 
5% 

 
Table 5. Means of SOCs and SOCs_ref for different soil types 

Soil Type SOCs, kg m-2 SOCs_ref, kg m-2 

 Mean ± Standard Deviation 

Inceptisol 10.32a±4.71 6.66a±4.20 

Entisol 8.98a±8.06 6.87a±4.29 

Ultisol 10.92a±3.83 7.09a±3.21 

Alfisol 8.15a±8.15 3.43a±1.61 

p-value 0.78 0.48 

Remarks: numbers followed by the same letter in the same 
row show no significant difference at the level of 
5% 

 
However, for Alfisols, the BD (1.18 g cm-3) is higher 

compared to BDref (0.99 g cm-3). The BD values for Entisols 
(1.27 g cm-3) are not significantly different from Inceptisols 
(1.19 g cm-3), Alfisols (1.18 g cm-3), and Ultisols (1.19 g cm-3), 
with the order being Entisol > Inceptisol > Alfisol > Ultisol. The 
lowest BDref is found in Alfisols (0.99 g cm-3), which is 
significantly different from Ultisols (1.32 g cm-3), but not from 
Entisols (1.27 g cm-3) and Inceptisols (1.26 g cm-3). Corrected 
BD for Alfisols shows a decrease of 16.1% compared to 
uncorrected BD, while other soil types experience an increase 
ranging from 3.78% to 7.09%. 

 

3.4. Pedotransfer for Soil Organic Carbon Stock (SOCs) 
Soil type does not significantly affect SOCs (p > 0.05) and 

SOCs_ref (Table 5). The SOCs calculated using uncorrected C-
org have higher concentrations, ranging from 8.15 to 10.92 kg 
m-2, compared to those calculated with Cref, which range 
from 3.43 to 7.09 kg m-2. The SOCs values for all soil types fall 
into the high category, with the order being Ultisols (10.92 kg 
m-2) > Inceptisols (10.32 kg m-2) > Entisols (8.98 kg m-2) > 
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Alfisols (8.15 kg m-2). After correction, the SOCs_ref values fall 
into the low and medium categories. Alfisols (3.43 kg m-2) are 
in the low category, while Ultisols (7.09 kg m-2), Entisols (6.87 
kg m-2), and Inceptisols (6.66 kg m-2) are in the medium 
category. The decrease in SOCs for Alfisols is 57.9% compared 
to uncorrected SOCs, while other soil types experience a 
decrease ranging from 23.4% to 35.4%. 

 

3.5. Pedotransfer for Soil Porosity 
Soil type significantly influences (p < 0.05) uncorrected 

porosity (Porosity) and corrected porosity (Porosity_ref) 
(Table 6). Uncorrected porosity values range from 37.98% to 
51.2%, which are higher than corrected porosity values, 
ranging from 36.21% to 49.79%, except for Alfisol. Alfisol 
shows a higher corrected porosity (53.2%) compared to its 
uncorrected value (45.37%). The highest Porosity_ref is found 
in Alfisols (53.2%), which significantly differs from Ultisol 
(36.21%) but not significantly from Entisol (49.79%) and 
Inceptisol (45.67%). Uncorrected porosity is highest in Entisol 
(51.24%), significantly different from Ultisol (37.98%) but not 
from Inceptisol (47.28%) and Alfisol (45.37%) (Table 6). After 
correction, Alfisol's porosity increased by 14.8%, while other 
soil types experienced a decrease ranging from 2.8% to 4.6%. 
This adjustment reveals that Alfisol has the highest porosity 
post-correction, whereas Entisol had the highest porosity 
before correction. 

 

3.6. Correlations Between Soil Properties 
Significant correlations were found between soil 

properties, especially among correction factors (Fig. 3). 
Porosity had a significant negative correlation with silt (r = -
0.46), CEC (r = -0.43), and a very significant negative 
correlation with BD. Porosity_ref had a significant negative 
correlation with CEC (r = -0.41), SOCs (r = -0.43), SOCs_ref (r = 
-0.46), and a very significant negative correlation with BD (r = 
-0.69) and BDref (r = -0.86). BDref had a significant positive 
correlation with Cref (r = 0.42), SOCs (r = 0.43), and a very 
significant positive correlation with SOCs_ref (r = 0.56), while 
BD did not significantly correlate with these parameters. Silt 
had a significant positive correlation with C-mic (r = 0.50) and 
Clay (r = 0.42). The silt and clay fractions not only maintain C-
org stability but also influence the presence of C-mic (Mao et 
al., 2024). Sand had a significant positive correlation with 
BDref (r = 0.45). SOCs had a very significant positive 
correlation with Cref (r = 0.85), C-org (r = 0.83), and SOCs_ref 
(r = 0.93).  

3.7. Regression Analysis of SOCs and Soil Porosity 
The regression models generated for SOCs and Porosity 

and their comparisons between models with uncorrected and 
corrected (PTFs) indicators to select the most accurate 
regression model for each SOCs and Porosity indicator (Table 
7). The correlation analysis identifies key indicators that 
contribute to the SOCs and porosity equation model. The 
SOCs and soil porosity equations consist of two models each. 
Model 1a represents the SOCs equation with BD (r=0,32), C-
org (r=0.83), sand (r=0,16), silt (r=-0,19), clay (r=-0,08), and 
CEC (r=-0,40) as contributing indicators, while Model 1b 
corresponds to the SOCs_ref equation with Bdref (r=0.56), 
Cref (r=0.93), sand (r=0.38), silt (r=-0.37), clay (r=-0.28), and 
CEC (r=-0.26). Model 2a defines the soil porosity equation 
with BD (r=-0.79), SOCs (r=-0.29), silt (r=-0,46), clay (r=-0,08), 
sand(r=0,3), and C-mic (r=-0,21), whereas Model 2b 
represents the soil porosity_ref equation with BDref (r=-0.86), 
SOCs_ref (r=-0.46), silt (r=-0.04), clay (r=0.26) , sand (r=0.14), 
and C-mic (r=0.03). All generated models exhibit R2 values 
ranging from 0.65 to 0.91, with the lowest value observed in 
the porosity model without corrected BD and SOCs (Model 
2.a). Determining equations through regression analysis, 
incorporating BD and SOCs corrected via PTFs has resulted in 
predictive models for Porosity_ref and SOCs_ref that 
demonstrate higher accuracy than models without correction 
of BD and SOCs. Model 1.b (R2 = 0.91), which represents SOCs 
with corrected BD and C-org (BDref and Cref), produces a 
more accurate equation than Model 1.a (uncorrected 
equation; R2 = 0.75). Model 2.a has a lower R2 value (0.65) 
compared to Model 2.b (0.81). This indicates that Models 1.b 
and 2.b are better able to explain variations in soil porosity 
and SOCs and exhibit higher accuracy than Models 1.a and 2.a. 
 
Table 6. Means of porosity and porosity_ref for different soil 

types 
Soil Type Porosity, % Porosity_ref, % 

 Mean ± Standard Deviation 

Inceptisol 47.28b±6.54 45.67ab±10.05 
Entisol 51.24b±4.14 49.79ab±6.09 
Ultisol 37.98a±5.87 36.21a±11.58 
Alfisol 45.37ab±4.61 53.26b±9.10 

p-value 0.003** 0.030* 

Remarks: *= significant; **= very significant; numbers 
followed by the same letter in the same row show 
no significant difference with the level of 5% 

 

 
Table 7. Model of pedotransfer functions 

 
Independent 

variable 
Dependent variable 

R-sq 
(adj) 

p-value Regression Equation 

Model 1.a SOCs BD, C-org, Sand, Silt, Clay, CEC 0.75 0.000** 
SOCs = -24.32 + 6.861 C-org + 

17.03 BD + 0.0414 Sand 

Model 1.b SOCs_ref 
BDref, Cref, Sand, Silt, Clay, 

CEC 
0.91 0.000** 

SOCs_ref = -4.79 + 10.826 Cref 
+ 0.0872 Silt + 0.1521 CEC 

Model 2.a Porosity 
BD,SOCs, Silt, Clay, Sand, C-

mic 
0.65 0.000** 

Porosity = 123.0 - 68.1 BD + 
0.0855 Sand 

Model 2.b Porosity_ref 
BDref, SOCs_ref, Silt, Clay, 

Sand, C-mic 
0.81 0.000** 

Porosity_ref = 112.53 
- 0.3259 % Silt - 48.59 BDref 

Remarks: * = significant; ** = very significant 
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Figure 3. Correlation plot among SOCs, Porosity and predictor variables. 

 

4. DISCUSSION 
Entisols, Inceptisols, Ultisols, and Alfisols are all classified 

as mineral soils with similar physical and chemical 
characteristics (Owonubi & Mustapha, 2024). However, 
specific differences become apparent upon closer 
examination of their physical, chemical, and biological 
properties (Table 2). Soil type significantly affects several soil 
characteristics including percentage of sand, silt, and clay, 
CEC, and C-mic. This study differentiates soils with similar 
slope gradients, rainfall, and land use to ensure that the 
results are specifically influenced by inherent factors (soil 
type). C-org, SOCs, and BD are not directly affected by soil 
type (Tables 4, 5, & 6), but they are influenced indirectly 
through ecosystem services, which result from 
physicochemical properties (Dengiz et al., 2015). Therefore, 
all ecosystem services need to contribute to the correction of 
C-org and BD and to the estimation of SOCs and porosity. 

Entisols are newly developed soils without horizon 
development, predominantly consisting of sand fractions due 
to minimal soil weathering (Warzukni & Jauharlina, 2023). 
The dominance of sand fractions in soil can lead to several 
issues, such as low CEC and soil fertility (C-org and C-mic) (da 
Costa et al., 2020), largely due to the inherent properties of 
the soil and its parent material (Huang & Hartemink, 2020). C-
mic tends to be greater in soils exhibiting a balanced textural 
composition such as silt loam, sandy loam, and clay loam, in 

contrast to soils predominantly composed of sandy textures 
(Li et al., 2020). Among the four soil types, Alfisols are noted 
for their comparatively more balanced soil textural 
composition. The lowest C-mic values in Entisols are 
attributed to the difficulty of microbes attaching to sand 
fractions, in contrast to Alfisols, which have the highest clay 
content and consequently the highest C-mic values. This is 
consistent with the findings of Kusumawati et al. (2020), 
which indicate that C-mic is significantly affected by soil type 
differences and depends on the clay content within the soil. 
The limited biological activity in Entisols is due to physical soil 
issues, such as poor soil aggregation, and climatic factors, 
particularly a microclimate that hinders the growth of soil 
microbes (Herawati et al., 2024). 

Soils with larger particle sizes (>2 µm) have lower CEC 
compared to finer particles (<2 µm) (Bi et al., 2023). This is 
because larger particles provide a smaller surface area with 
negative charges for cation retention (Liu et al., 2020). This 
observation aligns with the study findings, where Entisols, 
with the highest sand fraction (69.27%), exhibit the lowest 
CEC compared to other soil types. However, the dominance 
of sand fractions is not the sole determinant of low CEC. For 
instance, Alfisols, which have the highest fine texture 
fractions (clay and silt), do not have the highest CEC; instead, 
Inceptisols exhibit the highest CEC. This is because Inceptisols 
have the highest C-org content, although the difference is 



Tinuntun et al. SAINS TANAH – Journal of Soil Science and Agroclimatology, 22(1), 2025 

238 

insignificant (Table 4). Organic matter in soil has numerous 
negative ion charges and can neutralize pH, thereby 
increasing the negative charge on colloids and enhancing 
cation retention in the soil (Purnamasari et al., 2021). Low 
levels of C-org reduce the soil's negative charge, inhibiting 
cation exchange. Additionally, soil respiration and microbial-
C biomass underscore the critical influence of C-org content 
on both biological and chemical soil properties (Romadhon et 
al., 2024). C-org is a crucial indicator in assessing soil quality, 
fertility, and health due to its diverse roles in supporting 
ecosystem services within the soil. Thus, obtaining accurate 
and current C-org values is essential. 

C-org is a complex of carbon compounds that includes 
plant and animal residue, live microbial biomass, and carbon 
associated with mineral components as organo-mineral 
complexes, both protected and unprotected (Lal, 2018). 
Mineral soils, particularly those dominated by sand fractions, 
generally have low C-org content (Yost & Hartemink, 2019). 
Soil type does not significantly affect the availability of C-org 
and Cref (Table 3). However, corrected C-org using 
pedotransfer functions (PTF) results in lower Cref values. This 
is consistent with Hairiah et al. (2020), who found that 
uncorrected C-org ranges from 1.26% to 3.25%, while 
corrected Cref ranges from 0.577% to 1%. This demonstrates 
that PTF can provide a more detailed interpretation of data 
that cannot be fully explained by actual data using the 
Walkley-Black method alone. The formation of organo-
mineral complexes through SOC adsorption by Clay 
aggregates and chemical reactions (hydrogen bonding) 
between Clay surfaces and SOC can enhance SOC stabilization 
(Xue et al., 2022). Therefore, SOC assessments using the 
Walkley-Black method may be biased by the presence of Clay 
that dissolves and gets included in the measurement. PTF is 
needed to correct C-org values using silt and clay, providing 
actual C-org values without bias from the presence of clay and 
silt. 

Bulk density (BD) represents the dry weight of solid 
components per unit volume (Sinclair et al., 2020). Although 
soil type does not significantly affect BD, it significantly affects 
BDref. BD is generally lower than BDref, except for Alfisols. 
The observed changes are due to the BDref with soil texture 
(sand, silt, clay), resulting in more accurate data and a 
regression model (Arbor et al., 2024). Soil texture plays a 
critical role in determining soil compactness and the 
distribution of macro and micro pores, both of which directly 
affect bulk density conditions (de Lima et al., 2022). Alfisols, 
with the lowest BDref, also have the smallest sand fraction. 
According to Alaboz et al. (2021), sand has a significantly 
positive correlation, and clay has a significantly negative 
correlation with BD. This is aligned with the study results, 
showing that BDref has a significant negative correlation with 
clay and a significant positive correlation with sand, whereas 
BD does not show a strong correlation with these soil 
fractions (Fig. 3). Soils dominated by sand fractions are prone 
to compaction due to weak cohesion between particles, 
leading to easy compression through sand and silt 
reorganization and biological disturbances (Huang & 
Hartemink, 2020). Soil compaction can increase bulk density 
(Shaheb et al., 2021). 

The lower SOCs_ref values compared to uncorrected SOCs 
indicate that SOCs_ref may underestimate SOCs by ignoring 
the influence of C-org within soil particles. Ignoring C-org 
contained within coarse soil fractions in coarse-textured soils 
can also lead to an underestimation of SOCs (Gross & 
Harrison, 2018). The urgency of correcting SOCs with PTFs is 
also evident from the stronger correlation between SOCs_ref 
and BDref compared to the relationship between SOCs and 
BD, proving that BDref has a higher potential to contribute as 
a predictive variable. The findings indicate the necessity of 
applying pedotransfer functions (PTFs) to achieve more 
accurate estimates of SOC and BD in different soil types. PTF 
development primarily focuses on refining regression 
methods to improve estimates by accounting for soil physical 
and chemical interactions, while many critical factors remain 
underexplored (Weber et al., 2024). For instance, the 
correction in C-org values using PTF demonstrates the 
capability to remove biases associated with traditional 
measurement methods like Walkey and Black. Similarly, the 
correction in BD values shows a significant improvement in 
the estimation of soil bulk density by incorporating soil 
texture components such as sand, silt, and clay. 

Determining porosity_ref uses BDref (corrected BD), while 
porosity uses BD (BD without correction), so that it produces 
a different value from porosity without correction. The 
distribution of porosity_ref data becomes wider because it is 
influenced by Bdref, which has been corrected with soil 
texture (Table 4). The p-value on porosity is lower than 
porosity_ref, but this does not mean that PTFs is not needed. 
Uncorrected porosity is significantly influenced by soil type, 
as the physical properties, structure, and natural particle 
distribution determine pore space availability. The 
application of the PTF correction may result in slightly higher 
p-values, but it provides more accurate predictions by 
including additional variables, such as fine and coarse soil 
texture. As the PTFs correction usually includes more factors 
to improve the accuracy of the estimation, it may result in 
higher p-values as it accounts for a wider variability (Bzdok et 
al., 2020). This may reduce the statistical significance of 
certain elements, but increase the overall reliability and 
validity of the results. Corrected porosity (Porosity_ref), as 
adjusted using Pedotransfer Functions (PTFs), enhances the 
accuracy of the significant negative relationship between 
porosity and both SOCs and SOCs_ref. In contrast, 
uncorrected porosity does not show a significant correlation 
with SOCs and SOCs_ref (Fig. 3). The relationship between 
porosity and SOCs is not straightforward but is mediated by 
correction indicators such as C-org, soil texture particles, and 
elevation. The study area soils, dominated by sand fractions, 
exhibit high porosity with a substantial proportion of 
macropores. High macropore content can reduce SOC 
content in the soil (Guo et al., 2020), because organic matter 
inputs are easily transformed into CO2. Organic matter inputs 
to the top layer decompose quickly by microbial activity, 
resulting in slower accumulation and rapid degradation of 
atmospheric CO2 (Arunrat et al., 2020). Although adding more 
organic matter can enhance nutrient release to plants, it does 
not translate to higher soil absorption due to the rapid 
turnover.  
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The limited correlation between SOCs and SOCs_ref with 
soil fractions (sand, silt, and clay) is not attributable to 
inaccuracies in measurement but rather to biases caused by 
the high proportion of sand in the soil. This high sand content 
disrupts the relationship between fine-textured components 
(clay and silt) and SOCs, resulting in a non-linear association 
(Gonçalves et al., 2017). Correlation analysis was performed 
to identify relationships among soil properties, serving as a 
reference for distinguishing between independent and 
dependent variables within the PTFs equation (Alaboz et al., 
2021). The chosen predictor variables included clay, silt, sand, 
C-org, and pH (Z. Chen et al., 2024), C-mic, and CEC. However, 
one indicator, pH KCl, showed no significant correlation with 
other indicators and was consequently excluded as a 
predictor variable. Selecting predictor variables (dependent 
variables) based on correlation tests with independent 
variables helps reduce potential errors in the estimation 
model (Zhang et al., 2020). The accuracy of PTF models is 
determined based on their coefficients of determination (R2) 
values (Sun et al., 2019), with R2 values closer to 1 indicating 
a more precise model. The coefficient of determination (R2) 
represents the proportion of the dependent variable that can 
be predicted by the independent variables (Chicco et al., 
2021). Soil texture (sand, silt, and clay) contributes to all four 
estimation models for SOCs and Porosity, highlighting soil 
texture particles as the most prominent predictors for SOCs, 
particularly the sand and silt fractions (Hounkpatin et al., 
2018). The research findings indicate that after applying 
corrections using PTFs, the correlation values between SOCs 
and Porosity with the response variable have improved and 
become more accurate. A strong correlation between the 
predictor and response variables indicates that selecting 
these predictors significantly enhances the performance of 
PTFs (Perreault et al., 2022). The enhanced accuracy of 
Models 1.b and 2.b (corrected models) can be attributed to 
the stronger relationship observed between the predictor 
variables and the response variables after corrections were 
applied using PTFs, compared to models without such 
corrections (Fig. 3). Models 1.b and 2.b provide a more 
comprehensive explanation of variations in SOCs and 
porosity, making them more valuable for practical 
applications in soil research and management, as well as 
serving as a reference for sustainable oil palm plantation 
strategies compared to Models 1.a and 2.a. Information on 
SOCs and Porosity plays a crucial role in guiding land 
management practices for oil palm plantations (Rahman et 
al., 2021). Oil palm plantations are often cultivated on 
marginal lands with diverse soil types, such as Entisols, 
Ultisols, and Inceptisols (Segara et al., 2019), and other 
varieties, making it challenging to define a comprehensive 
land management strategy for oil palm plantations. 
Therefore, to predict and establish SOCs and porosity values 
that are both accurate and applicable across varying 
conditions, it is essential to consider additional soil factors 
(texture, BD, C-org) through the application of PTFs.  

 

5. CONCLUSION 
Our study developed pedotransfer function (PTF) models 

to predict soil organic carbon (SOC) and porosity in oil palm 

plantations. Equations using PTFs showed higher predictive 
accuracy. Accurate SOCs and porosity estimates are essential 
for policymaking and sustainable land management. 
Pedotransfer-based approaches enable universal strategies 
and promote best agricultural practices. Since this study 
tested PTF models on four mineral soil types, further 
validation is needed. Future research should examine peat 
soils and other mineral soil types. 
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