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Coffee is an essential agricultural commodity that significantly contributes to Indonesia's 
foreign exchange revenue. Arabica coffee (Coffea arabica L.), generally grown in highland 
areas at elevations between 1,000 to 2,000 m above sea level, exhibits persistently low 
productivity within the country. A primary factor influencing this low yield is the 
biophysical condition of the land. This study aims to examine the impact of land biophysical 
characteristics on Arabica coffee productivity and to investigate the interrelationships 
among those biophysical factors. This study was conducted in Bandung Regency, West Java 
Province, Indonesia. This study utilized 60 data sets encompassing 22 land biophysical 
parameters and one plant parameter, specifically coffee productivity. The data collection 
utilized a survey approach. Land biophysical data were collected through field observations 
and laboratory analyses, whereas coffee productivity data were obtained through farmer 
interviews. The principal component regression (PCR) method, incorporating principal 
component analysis (PCA) and multiple regression, was employed for statistical analysis. 
The findings indicated 7 principal components (PC) with a data representation level of 
75.8%.  PC1 comprises primary components consisting of sand content, clay content, 
exchangeable Mg, Ca, and Na, with a representation level of 18.6%. PC2 consists of 
exchangeable K and potential K2O, while PC3 consists of total N, organic C, altitude, and 
slope. These components are the most significant factors influencing Arabica coffee 
production. The application of K and N fertilizers along with organic materials is expected 
to increase Arabica coffee production. 
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1. INTRODUCTION
Coffee represents a promising agricultural commodity for 

Indonesia. Despite constituting a modest share of total 
plantation commodity exports at 2.91%, coffee exports have 
experienced significant annual growth (Pusdatin, 2023). 

Export values have increased from US$ 99,836 in 1975 to US$ 
1,148,383 in 2022 (Ditjenbun, 2023). The value of coffee 
exports during the period of 2015-2022 exhibited 

fluctuations. In 2017, the coffee export value reached its peak 
at US$1,186,866, accompanied by an export volume of 
467,796 tons. Indonesia's coffee exports predominantly 

consist of coffee beans, accounting for 97.35%, dominated by 

Arabica and Robusta varieties. The remaining exports are in 
the form of crushed coffee and coffee powder (Ditjenbun, 
2023). 

Arabica coffee (Coffea arabica L.) ranks as the second 
most prevalent coffee variety cultivated in Indonesia, 
following Robusta coffee. Arabica coffee thrives in mineral-

rich soil, particularly at altitudes exceeding 1000 m above sea 
level. In contrast, Robusta coffee is optimally cultivated at 
altitudes ranging from 300 to 900 m above sea level. Elevated 
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altitudes influence the quality of Arabica coffee. Worku et al. 

(2018) reported that the content of caffeine and chlorogenic 
acid in wet-processed coffee beans diminished with rising 
altitude, whereas sucrose content increased with altitude. It 

was reported that acidity increased with altitude for coffee 
grown under shade; however, altitude had no significant 
effect on coffee grown without shade. Coffee cultivated in 

non-shade conditions typically exhibits superior physical 
quality in dry beans relative to wet-processed beans (Worku 
et al., 2022). The phenomenon results from the intricate 

interplay of altitude, shading conditions, and post-harvest 
processing, which together influence the biochemical 
composition and overall quality of Arabica coffee beans.  

Bandung Regency ranks among the largest producers of 
Arabica coffee in West Java, encompassing a cultivation area 
of 14,374 hectares and yielding an annual production of 8,183 

tons. This figure represents 56.31% of the total Arabica coffee 
production in West Java Province (Ditjenbun, 2023). The low 
level of productivity represents a significant challenge in 

coffee development in Indonesia, particularly in West Java. In 
2022, Indonesia's coffee production totalled 794.8 thousand 

tonnes, cultivated over a harvest area of 1,285.8 thousand ha. 
Indonesia’s coffee productivity in 2022 was 0.62 tonnes ha-1, 
markedly lower than that of Brazil and Vietnam, the leading 

coffee-producing nations, with recorded productivity levels of 
1.69 and 2.94 tonnes ha-1, respectively (FAO, 2024).  

The productivity of a commodity is influenced by multiple 

factors, including biophysical land characteristics and the 
cultivation techniques employed. Land biophysical factors, 
including soil properties, topography, and climate, 

significantly affect plant growth and coffee productivity, 
alongside geographical location and socioeconomic factors 
(Yadessa et al., 2020). The complex interaction of these 

characteristics results in diverse coffee production systems; 
each managed with varying intensities. Various soil 
properties, such as low soil physicochemical characteristics, 

may lead to reduced Arabica coffee production (Benevenute 
et al., 2025; Siahaan et al., 2022). Improving Arabica coffee 
productivity requires a thorough understanding of the 

limiting factors affecting production and the biophysical 
characteristics of the land essential for optimal growth and 
yield. Moreover, the impact of these interrelated factors on 

crop performance is recognized to differ across geographic 
regions. 

Principal component analysis (PCA) serves as a systematic 

and objective method for determining the weights of multiple 
factors (Sappe et al., 2022). This method has been used to 

evaluate the variability of properties in the upper layer of 
Cambisols taxa and their correlation with altitude and forest 
ecosystems in the Western Carpathians (Pivková et al., 2024). 

This method was used to identify soil quality indicators for the 
assessment and evaluation of the soil quality index (SQI) 
within the agroforestry system in the Upper Citarum 

Watershed, Indonesia (Mulyono et al., 2019). PCA has been 
extensively utilized to identify biophysical factors affecting 
Arabica coffee productivity and quality across diverse global 

contexts, including the integration of elevation and 
agroforestry in Ethiopia (Getachew et al., 2023) and climate-

vegetation models in Vietnam (Thao et al., 2022). This study 

introduces a novel application of PCA that specifically 
examines soil biophysical properties in relation to Arabica 
coffee productivity in the Indonesian highlands. This study 

differentiates itself from prior research by focusing on soil 
physicochemical components and topographic indicators, 
thereby establishing their statistical relationship with yield. 

This approach offers site-specific insights for evaluating land 
suitability and managing nutrients in Arabica coffee systems. 

The effective development of a commodity, 

encompassing both quality and production, is significantly 
influenced by land suitability, defined as the extent to which 
a specific area of land is suitable for designated use. Suitability 

is assessed based on various land qualities, specifically 
complex attributes that affect the potential for sustainable 
cultivation. Land suitability, shaped by the interplay of diverse 

biophysical properties and cultivation practices, is crucial for 
attaining sustainable production. Land suitability for coffee 
production is determined by the interplay of biophysical 

properties, including soil characteristics, elevation, and 
climate, alongside cultivation practices.  

This research aims to determine the model that elucidates 
the relationship between the biophysical properties of land 
and their impacts on coffee productivity in Indonesia, 

employing the principal component analysis (PCA) method. 
The PCA method is a technique for dimensionality reduction 
in datasets, enhancing interpretability and minimizing 

information loss. This is achieved by generating new 
uncorrelated variables, referred to as principal components, 
that sequentially maximize the variance in the data (Jolliffe & 

Cadima, 2016). The advantage in this case is that the 
influential variables are not treated as a singular factor; 
rather, the primary components comprise interrelated 

factors. Furthermore, multiple regression analysis is 
employed to determine the impact of these primary 
components on Arabica coffee productivity. 

 

2. MATERIALS AND METHODS 

2.1. Description of the study area 
The research was conducted in Bandung Regency, West 

Java Province, Indonesia (Fig. 1) in 2023. The Bandung 
Regency area is situated between 107°27' to 107°49' East 
Longitude and 7°16' to 6°48' South Latitude. Arabica coffee 

plantations in this region are located in forested areas and on 
agricultural land, typically at elevations >1000 meters above 
sea level. Coffee plantations are typically overseen by small-

scale farmers who utilize low levels of technological input, 
characterized by limited management practices and minimal 
or absent fertilization. The terrain is predominantly hilly to 

mountainous, characterized by slopes >15%. However, 
certain areas exhibit flat to rolling land with slopes <15%. The 
average annual rainfall varies between 1,500–3,000 mm year-

1. The geological conditions of the research area consist of 
volcanic rocks, sedimentary rocks, and intrusive rocks (Alzwar 
et al., 1992; Silitonga, 1973). The primary soil units consist 

predominantly of Inceptisols and Andisols (BBSDLP, 2016). 
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Figure 1. Research location in Bandung Regency 

 

2.2. Data collections 
The field data collection was carried out using a survey 

approach, involving land identification and characterization 
at 60 observation points within the Arabica coffee plantation 
area (Fig. 1). The selection of observation locations and the 
collection of soil and plant samples were conducted 
purposively, taking into account the diversity of soil parent 
materials, topography, elevation, soil type, land management 
practices, the distribution of Arabica coffee plantations and 
land use types associated with Arabica coffee cultivation. 
Diversity significantly influences land characteristics and 
biophysical conditions, which in turn affect Arabica coffee 
productivity. 

Identification and characterization of land in the field aim 
to obtain data on biophysical conditions of the land, such as 
altitude, slope, rock outcrop (ROC), soil drainage, and soil 
solum depth. Furthermore, 1 kg of composite soil samples 
was collected from a depth of 0-30 cm at each observation 
point to analyze the physicochemical properties of the soil in 
the laboratory. Composite soil samples collected from the 
field were air-dried for 1-3 days, subsequently ground, and 
sieved to achieve a particle size of less than 2 mm, which is 
required for laboratory soil analysis. 

The content of the clay and sand fraction is determined 
through soil particle size analysis. The sand fraction was 
isolated through wet sieving with a 50 mm sieve. The pipette 
method was employed to determine silt and clay contents. 
Soil pH was determined utilizing a glass electrode in a mixture 
of water and 1M KCl at a soil: solution ratio of 1:5. Organic 
carbon was determined through the wet combustion method 
(Walkley and Black method), and total N was determined 

using distillation (Kjeldahl method). Exchangeable cations (Ca, 
Mg, K, Na) were extracted using 1M NH4OAc pH 7.0 and 
analyzed using an atomic absorption spectrometer (AAS). 
Cation exchange capacity was determined through saturation 
with 1M NH4OAc pH 7.0, followed by direct distillation 
measurement. Base saturation is defined by CEC, which 
encompasses all exchangeable alkaline cations present in the 
soil. Exchangeable acidity (Al3+ and H+) was extracted using 
1M KCl and quantified using titration. The measurement of 
potential P2O5 and K2O was conducted using the 25% HCl 
extraction method, whereas available P2O5 was determined 
using the Bray 1 extraction method. The extract is 
subsequently diluted, and the nutrients are quantified using 
AAS. The chemical measurement methods employed in this 
study are detailed in the Soil Survey Laboratory Methods 
Manual (Soil Survey Staff, 2014), and the evaluation of soil 
properties adhered to the Technical Guidelines for Soil, Plant, 
Water, and Fertilizer Chemical Analysis (Eviati et al., 2023). 
The methods, instruments, and manufacturers used for the 
analysis of biophysical parameters are presented in Table 1. 

The data for annual rainfall is derived from Climate Data 
(2024). This model generates data on rainfall for each village 
area. This data serves as rainfall information for the soil and 
plant sampling locations. In this study, Arabica coffee 
productivity serves as the independent variable. Data were 
collected through interviews with farmers to ascertain the 
average production of Arabica coffee per hectare per year at 
each observation site. Nearly all collected data is numerical, 
with the exception of soil drainage conditions. Soil drainage is 
categorized into 7 classes: very poor drainage, poor drainage, 
rather poor drainage, fairly good drainage, good drainage, 
rather excessive drainage, and excessive drainage.  
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Table 1.  Biophysical parameters, analytical methods, instruments, and manufacturers 

Category Parameters 
Method of Data 

Acquisition 
Instruments and Manufacturer 

Climate Annual rainfall Secondary data from 
regional climatological 
sources 

- 

Terrain Elevation, slope, solum depth, 
drainage, rock outcrops (ROC) 

Field observation (GPS, 
clinometer, soil auger, 
visual assessment) 

· Elevation was recorded using a 
Garmin eTrex 32x GPS (Garmin Ltd., 
Olathe, KS, USA). 

· Slope (%) was measured using a 
Suunto PM-5/360 PC clinometer 
(Suunto, Vantaa, Finland). 

· Soil depth, rock outcrops, and 
drainage were assessed visually 
and classified using FAO Land 
Evaluation Guidelines (FAO, 2007). 

Soil Texture Sand and clay content Particle size analysis via 
pipette method 

Glassware + precision balance (AND GF-
3000, A&D Co. Ltd., Tokyo, Japan) 

Soil Chemical 
Properties 

Organic C Walkley and Black wet 
oxidation method 

Spectrophotometer (Shimadzu UV-1800, 
Kyoto, Japan) 

 Total N Kjeldahl digestion method Digestion and distillation unit (Gerhardt 
Kjeldatherm, Konigswinter, Germany) 

 Soil pH Measured in a 1:5 soil-to-
water suspension 

pH meter (Hanna Instruments HI2211, 
Woonsocket, RI, USA) 

 Exchangeable bases (K⁺, Ca²⁺, 
Mg²⁺, Na⁺) 

Extracted with 1 M 
NH₄OAc; analyzed with 
AAS 

AAS (PerkinElmer AAnalyst 400, USA) 

 Exchangeable acidity (Al³⁺, H⁺) Extracted with 1 M KCl Titration method 
 Cation Exchange Capacity (CEC) Determined using 1 M 

NH₄OAc at pH 7, followed 
by NaCl displacement 

AAS after displacement by NaCl 

 Base Saturation (%) Calculated as: 
(Σ exchangeable base 
cations / CEC) × 100 

- 

 Al saturation (%) Calculated as: 
(exchangeable Al / CEC) × 
100 

- 

 Available phosphorus (P) Bray I extraction method Spectrophotometer (Shimadzu UV-1800, 
Japan) 

 Potential P₂O₅ and K₂O Extracted with 25% HCl, 
then diluted and analyzed 
via AAS 

Atomic Absorption Spectrophotometer 
(AAS) (PerkinElmer AAnalyst 400, 
Waltham, MA, USA) 

 
Soil drainage is categorized as follows: very poor and poor 

drainage receive a score of 1, fairly poor drainage is assigned 
a score of 2, fairly good drainage is rated 3, good drainage is 
given a score of 4, and excessive drainage is scored 5. 

This research utilizes 60 data sets comprising 22 land 
biophysical parameters as independent variables and Arabica 
coffee productivity as the dependent variable. The data 
analysis employs the principal component regression (PCR) 
method, which integrates principal component analysis (PCA) 
with multiple regression methods. PCR is a method designed 
to address issues of multicollinearity (Supriyadi, 2017). Data 
standardization is essential prior to PCA analysis due to PCA’s 
sensitivity to variable scales. The PCA reduces variables to a 
limited number of substitute variables, referred to as 
principal components (PC). Each principal component 
represents a linear combination of the original variables, with 

weights established by the eigenvectors. The eigenvalues 
indicate the variance of a PC, reflecting the proportion of the 
total variable accounted for by that component. The PCA 
method necessitates additional analysis to elucidate the 
relationship between the independent substitute variables 
(Principal components) and coffee productivity as the 
dependent variable. The relationship was established through 
multiple regression analysis. This research employs Minitab 
14 for data analysis. 

 

3. RESULTS 
3.1. Description of biophysical land properties data 

The soil texture at the research site ranges from sand to 
clay, exhibiting a sand fraction content of 3 to 93% and a clay 
fraction content of 1 to 58%.  
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Table 2. Description of dependent and independent variable data 

Variables Mean CV Min Median Max Range 

Coffee Productivity (kg ha-1 year-1) 2,662 91.56 90 1,639 8,889 8,779 
Sand fraction (%) 28 88 3 21 92 89 
Clay fraction (%) 25 62 1 26 58 57 
Soil pH 5.63 8.38 4.60 5.60 7.29 2.69 
Organic C (%) 5.12 29.41 2.30 4.97 8.91 6.61 
Potential P2O5 (mg 100 g-1) 123.20 89.48 31.20 80.40 460.00 428.80 
Potential K2O (mg 100 g-1) 19.87 90.42 3.24 13.35 87.46 84.22 
CEC (cmolc kg-1)  19.11 36.56 3.00 19.08 34.67 31.67 
Exchangeable Ca (cmolc kg-1) 5.97 55.80 1.19 5.51 21.11 19.92 
Exchangeable Mg (cmolc kg-1) 1.49 58.18 0.18 1.65 4.36 4.18 
Exchangeable K (cmolc kg-1) 0.36 101.88 0.03 0.24 1.79 1.76 
Exchangeable Na (cmolc kg-1) 0.23 36.19 0.06 0.22 0.52 0.46 
Base saturation (%) 44.22 39.03 9.00 46.50 100.00 91.00 
Available P (mg kg-1) 32.30 106.99 0.85 20.00 143.44 142.59 
Total N (%) 0.52 53.02 0.13 0.43 1.32 1.19 
Exchangeable Al (cmolc kg-1) 0.23 199.20 0.00 0.00 2.19 2.19 
Exchangeable H (cmolc kg-1) 0.47 118.03 0.00 0.28 3.17 3.17 
Slope (%) 31 52 1 30 78 77 
Soil drainage 4.0 15.0 3 4 5 2 
ROC (%) 1.0 533.04 0 0 40 40 
Solum depth (cm) 103 24.21 38 120 134 96 
Elevation (m asl) 1,373 13.01 970 1,335 1,850 880 
Annual rainfall (mm year-1) 3,440 12.06 1,839 3,277 4,156 2,317 

Notes: CV = coefficient of variation, CEC = cation exchange capacity, ROC = rock out of crop 
 

The soil chemical analysis indicated a pH value range of 
4.6 (acidic) to 7.2 (neutral). Organic C levels ranged from 2.3% 
(moderate) to 8.9% (very high), while total N varied from 
0.13% (low) to 1.32% (very high). The potential P2O5 content 
ranges from moderate to very high, with values between 31.2 
and 460.0 mg 100 g-1. The levels of potential K2O and available 
P2O5 range from low to very high, with measurements of 
3.24–87.46 mg 100 g-1 and 0.85–143.44 mg 100 g-1, 
respectively. CEC values are classified from low to high, 
spanning a range of 3.0–34.67 cmolc kg-1,, while base 
saturation varies from very low to very high, with a range of 
9.0–100%. Exchangeable bases, comprising Ca, Mg, K, and Na, 
exhibit values from 0 to 21.11 cmolc kg-1, indicating a low to 
high classification. In contrast, exchangeable Al is categorized 
as low to medium, with values ranging from 0 to 2.19 cmolc 

kg-1. The soil physical analysis revealed that slope level ranges 
from 1 to 78%, drainage conditions are moderate to very fast, 
rock cover on the surface ranges from 0 to 40%, elevation 
from 970 to 1,850 m above sea level, and annual rainfall 
fluctuates from 1,839 to 4,156 mm. 

The mean coffee productivity at the research site is 2,662 
kg ha-1 year-1, with a range from 90 to 8,889 kg ha-1. Table 2 
presents the biophysical land properties and productivity 
data categorized as dependent and independent variables is 
presented in. 

 

3.2. The results of Pearson correlation analysis  
A Pearson correlation analysis of soil biophysical 

properties data was carried out to determine the relationship 
between variables. These results showed that several 
variables have strong positive correlations with other 
variables. On the other hand, several variables have a strong 

negative correlation, indicating that these indicators show a 
mutually weakening relationship. In Table 3, the correlations 
between pairs of variables that are strong and positive (R > 
0.6) at a significance level of <0.01 including potential K2O and 
exchangeable K (0.99), potential P2O5 and available P (0.79), 
total N and organic C (0.76), exchangeable Mg and 
exchangeable Ca (0.73), exchangeable Mg and clay fraction 
(0.67), base saturation and exchangeable Ca (0.65), and base 
saturation and exchangeable Mg (0.61). Additionally, several 
relationships between pairs of variables that have a high 
negative correlation (R < -0.6) at a significance level of <0.01, 
including clay and sand fraction content (-0.66), exchangeable 
Mg and sand fraction content (-0.62), and soil pH and 
exchangeable Al (-0.62). 

The analysis of land biophysical properties using the PCA 
method resulted in seven new independent principal 
components (PC). The constituent variables within each PC 
are closely interrelated, both positively and negatively. PCs 
were selected based on an eigenvalue greater than 1 (Table 
4). The total variance value of the seven PCs is 0.758. This 
shows that the seven main components can explain around 
75.8% of all independent variable data analyzed. 

Data processing of land biophysical properties using factor 
analysis from the PCA method produces factor loading values 
for the 22 variables. The factor loading values that have been 
rotated and sorted for each of these variables for each main 
component factor are presented in Table 5. These factors’ 
loading values determine the biophysical parameters of the 
land that have a major influence on the main components. 
The greater the loading factor of a parameter, the greater its 
role in a principal component (factor index). 
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Table 3. Correlation matrix between independent variables 
Parameters Sand Clay pH C-org P-pot K-pot CEC Ca-exc Mg-exc K-exc Na-exc BS P_avl N_tot Al-exc H-exc slope drainage ROC Solum Elv 

Clay -0.66** 1                    

pH 0,034 -0,076 1                   

C-org -0,131 0,075 -0.255* 1                  

P-pot 0,156 -0,019 -0.39** 0,222 1                 

K-pot -0,174 0,012 0,134 0,147 0,026 1                

CEC -0.583** 0,054 0,038 0.286* -0,09 0,18 1               

Ca-exc -0.451** 0.346** 0,041 0,157 0,131 0.426** 0.414** 1              

Mg-exc -0.622** 0.669** -0,011 0,105 -0,04 0.329* 0.269* 0.73** 1             

K-exc -0,183 0,031 0,146 0,136 -0,006 0.995** 0,173 0.437** 0.354** 1            

Na-exc -0.441** 0.439** -0,097 0,099 0,095 -0,1 0,179 0,283 0,19 -0,086 1           

BS -0,025 0.373** 0,079 -0,116 0,046 0,334 -0.37** 0.647** 0.612** 0.359** 0,128 1          

P_avl 0.329* -0,216 -0,044 -0,017 0.786** 0,04 -0,053 0,099 -0,161 0,014 -0,174 -0,01 1         

N_tot -0,049 -0,122 -0,251 0.761** 0.417** 0,047 0.306* 0,159 -0,066 0,027 0,204 -0,197 0,139 1        

Al-exc -0,02 0,009 -0.615** 0,211 0.381** 0,188 -0,027 0,132 0,05 0,178 -0,063 0,063 0.271* 0,084 1       

H-exc -0,134 0,118 -0.325* -0,231 0,195 -0,052 -0,106 -0,149 -0,033 -0,057 -0,046 -0,098 0,162 -0,251 0.432** 1      

slope -0,167 0,029 0,137 0,213 -0,085 0,125 0,253 0,153 0,151 0,093 0,068 0,012 -0,201 0.365** -0,196 -0.267* 1     

Drainage 0,206 -0,209 -0,017 0,257 -0,07 0,154 0,092 -0,089 -0,162 0,148 -0,19 -0,125 0,006 0,193 -0,039 -0.277* 0,028 1    

ROC 0,096 -0,136 0.426** 0,059 -0,01 0.284** 0,107 -0,048 -0,085 0.28** -0,085 -0,126 0,188 0,003 0,009 -0,065 0,065 0,217 1   

Solum -0,1 0,062 -0,047 0,215 0,051 0,139 0,2 0,11 0,08 0,123 0,135 -0,061 0,11 0,226 -0,013 -0,315 0,24 0,254 0,054 1  

Elv 0.321* -0.378** -0,254 0.32** 0,386 -0,067 -0,065 -0,1 -0.286** -0,103 -0,113 -0,126 0.278* 0.573** 0,202 -0,094 0,25 0,122 -0,055 -0,022 1 

Rainfall 0,216 -0,154 0,07 -0,178 0,062 -0,141 -0,101 -0,096 -0.262* -0,159 0,084 -0,077 0,136 0,08 -0.263* -0.305* 0,126 0,145 0,014 0.256* 0,158 

Notes: C-org = organic Carbon, P-avl = available Phosphorus, P-pot = Potential Phosphorus, K-pot = Potential Potassium, K-avl = available Potassium, Ca-exc =  exchangeable Calcium, 
Mg = exchangeable Magnesium, K-exc = exchangeable Potassium, Na-exc = exchangeable Natrium, N-tot = total Nitrogen, Al-exc = exchangeable Aluminium, H-exc = 
exchangeable Hydrogen, CEC = cation exchange capacity, BS = base saturation, , ROC = rock out of the crop, , Elv = elevation, **correlation is significant at the 0.01 level (2-
tailed), * correlation is significant at the 0.05 level 
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Table 4. The results of eigen analysis 

Indicator PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC7 

Eigenvalue 4.09 3.22 2.72 2,39 1.72 1.36 1.16 
Proportion 0.186 0.146 0.124 0.109 0.078 0.062 0.053 
Cumulative 0.186 0.332 0.456 0.565 0.643 0.705 0.758 

Note: PC = Principal component 
 
Table 5. The loading factor values are rotated based on the results of factor analysis of land biophysical parameters 

Land Biophysical Properties  Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7 

Sand fraction -0.811 0.105 0.027 -0.07 0.228 -0.378 -0.097 
Clay fraction 0.808 0.014 0.159 0.117 -0.121 -0.098 0.013 
Exchangeable Mg 0.768 -0.408 -0.016 0.015 -0.113 -0.200 0.099 
Exchangeable Ca 0.665 -0.489 -0.192 -0.086 0.178 -0.191 0.022 
Exchangeable Na 0.654 0.263 -0.095 -0.040 0.081 0.061 -0.132 
Exchangeable K 0.077 -0.929 -0.024 0.014 -0.009 -0.006 -0.062 
Potential K2O 0.059 -0.924 -0.050  0.016 0.017 0.008 -0.069 
Total N 0.038 0.032 -0.880 0.094 0.199 0.158 -0.166 
Organic C 0.081 -0.155 -0.735 0.283 -0.060 0.177 -0.167 
Elevation -0.359 0.114 -0.698 0.095 0.298 -0.151 0.061 
Slope 0.144 -0.071 -0.581 -0.379 -0.145 0.037 -0.026 

Soil pH -0.080 -0.223 0.210 -0.852 -0.061 0.121 0.084 

Exchangeable Al -0.016 -0.236 -0.043 0.781 0.265 0.009 0.111 

Exchangeable H 0.023 0.061 0.359 0.520 0.191 0.193 0.484 

Available P2O5 -0.167 -0.084 0.031 0.071 0.920 0.030 -0.047 
Potential P2O5 0.040 0.030 -0.245 0.311 0.847 -0.079 0.005 

Base saturation 0.386 -0.413 0.092 -0.079 0.061 -0.775 0.074 

CEC 0.382 -0.175 -0.296 -0.079 -0.065 0.704 -0.055 
Rock out of crop -0.222 -0.422 0.108 -0.317 0.229 0.437 -0.065 
Solum depth 0.189 -0.075 -0.100 0.005 0.080 0.129 -0.774 
Soil drainage -0.339 -0.242 -0.136 0.102 -0.177 0.097 -0.620 

Annual rainfall -0.087 0.289 0.007 -0.351 0.259 -0.152 -0.560 

Note: The underlined numbers indicate the most influential variables in the same factor 
 

 
Notes: Sand = Sand fraction, Clay = Clay fraction, pH = Soil pH, 

Org-C = Organic C, Pot-P = Potential P2O5, Pot-K = 
Potential K2O, CEC= Cation Exchange Capacity, Exc-Ca 
= Exchangeable Ca, Exc-Mg = Exchangeable Mg, Exc-K 
= Exchangeable K, Exc-Na = Exchangeable Na, BS = 
Base saturation, Avai-P = Available P, Tot-N = Total N, 
Exc-Al = Exchangeable Al, Exc-H = Exchangeable H, ROC 
= Rock out of Crop, and Prep = Annual rainfall 

Figure 2. Plot Loading 

The results of Pearson correlation analysis showed that 
several variables have a strong positive correlation with other 

variables or are mutually reinforcing, and conversely, several 
variables have a strong negative correlation with others or are 
mutually weakening. Table 2 shows the correlation between 
various land biophysical parameters used in this study. 
Several land biophysical properties were correlated positively 
(mutually reinforcing) and negatively (mutually weakening). 
Land biophysical properties that were closely and positively 
correlated (R>0.6) were between available K and potential 
K2O, available P and potential P2O5, organic C and total N, 
exchangeable Ca and exchangeable Mg, clay content and 
exchangeable Mg-dd, clay fraction content and exchangeable 
Ca, and base saturation and exchangeable Ca. Meanwhile, 
several biophysical properties of land that are closely and 
negatively correlated (R<-0.6) are the relationship between 
sand fraction and clay fraction content, sand fraction content 
with exchangeable Mg, and exchangeable Al with soil pH. 

 

3.3. The results of principal component regression 
analysis 

The application of the PCA method in analyzing land 
biophysical properties resulted in the generation of seven 
independent principal components (PC). The constituent 
variables in each PC exhibit close relationships, both positive 
and negative. Factor analysis utilizing the PCA method on land 
biophysical properties data yields factor loading values for 22  
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Figure 3.  Regression analysis 

 
land related to biophysical properties. The factor loading 
values significantly influence the principal components 
related to land biophysical parameters. A higher loading 
factor of a parameter indicates a more significant role in the 
PC. Figure 2 illustrates a loading plot that depicts the 
relationship between factor 1 and factor 2. A positive value 
indicates a positive correlation between factor 1 and factor 2. 
A negative value signifies an inverse relationship between the 
two factors. 

The biophysical parameters of land significantly 
influencing each PC are outlined as follows: PC1 comprises 
the sand fraction, clay fraction, and the levels of 
exchangeable magnesium (Mg), calcium (Ca), and sodium 
(Na). The influence of land characteristic variables on this 
factor is determined to be 18.6%; PC2 consists of available K 
and potential K2O. The influence of these two characteristic 
variables is approximately equivalent, and they mutually 
reinforce each other. The certainty level of these two 
variables in the factor index is 14.6%; PC3 comprises total 
nitrogen (N), organic carbon (C), elevation, and slope. The 
influence of these land characteristic variables on this factor 
index is determined to be 12.4%; PC4 consists of soil pH, 
aluminum (Al), and hydrogen (H). The influence of these land 
characteristic variables on this factor index is quantified at a 
certainty level of 10.9%; PC5 includes both available P and 
potential P2O5. The influence of these two land characteristic 
variables on this factor index is quantified at a certainty level 
of 7.8%; PC 6 comprises base saturation, CEC (cation 
exchange capacity), and rocks out of the crop. The influence 
of these land characteristic variables on this factor index 
quantified at a certainty level of 6.2%; PC7 consists of solum 
depth, drainage conditions, and rainfall. The influence of 
these land characteristic variables on this factor index is 
quantified at a certainty level of 5.3%.   

 

3.4. Multiple regression analysis 
The multiple regression analysis results indicate a 

relationship between productivity, the dependent variable, 

and biophysical index factors (PC), the independent variables, 
with a coefficient of determination (R2) of 9.8%. This value 
indicates that the model accounts for only a minor portion of 
the factors influencing Arabica coffee productivity, with other 
variables excluded from this study. PCA-based regression 
approaches in agricultural studies often exhibit limitations, as 
PCA reduces data dimensionality while potentially obscuring 
the influence of individual variables on complex outcomes 
such as crop productivity (Jolliffe & Cadima, 2016). PCA 
continues to be an effective method for uncovering 
underlying structures and patterns in multivariate datasets, 
particularly within biophysical and ecological research (Abdi 
& Williams, 2010). Figure 3 presents the regression analysis 
conducted between productivity and principal components. 
The equation delineating the relationship between Arabica 
coffee productivity and biophysical indices is expressed using 
Equation 1. 

Y prod =  2662 – 139PC1 + 468PC2 + 360PC3 – 270PC4 – 
113PC5 + 134PC6 + 331PC7 ............................... [1] 

where: Y prod: Arabica coffee productivity (kg ha-1 year-1); 
PC1: Sand content (%), clay content (%), exchangeable Mg, 
Ca, and Na (cmolc kg-1); PC2: exchangeable K (cmolc kg-1) and 
potential K2O (mg 100 g-1); PC3: Total N (%), organic C (%), 
elevation (m asl), and slope (%); PC4: Soil pH, exchangeable Al 
and H (cmolc kg-1); PC5: available P (mg kg-1) and potential 
P2O5 (mg 100 g-1); PC6: Rock out of crop (%), solum depth 
(cm), and soil drainage; PC7: annual rainfall (mm year-1) 

A very low R2 value indicates the presence of unexplained 
components within the multiple regression model, which is 
deemed unacceptable. Pest and disease occurrences, 
agricultural management practices, and genetic variation may 
affect productivity (Liliane & Charles, 2020). 
 

4. DISCUSSION 
The study’s primary finding reveals that the biophysical 

characteristics of land have a significant effect on Arabica 
coffee productivity in Bandung Regency. Principal component 
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regression (PCR) analysis showed that PC1 explained the 
greatest variance (18.6%), incorporating variables such as 
sand and clay fractions, along with exchangeable Mg, Ca, and 
Na. The variables reflect soil texture and base saturation 
status, which influence water retention capacity, cation 
exchange dynamics, and root development, all essential for 
plant growth. 

PC2 comprises exchangeable K and potential K₂O, which 
are essential for carbohydrate metabolism, fruit 
development, and stress resistance in coffee plants. An 
adequate supply of potassium is recognized to enhance bean 
size and uniformity, consequently improving yield. PC3 
encompasses total N, organic C, elevation, and slope, 
reflecting soil fertility and topographic influences. Increased 
organic matter and nitrogen levels enhance microbial activity 
and nutrient availability, whereas elevation and slope affect 
microclimatic factors, including temperature and drainage, 
essential for Arabica coffee growth. The principal 
components collectively account for the spatial variability of 
coffee productivity identified in the study area. 

The relationship among the variables in this group 
indicates that increased clay content facilitates greater 
exchange complexes in the soil, thereby enhancing the levels 
of exchangeable bases present in the soil. The value of CEC is 
influenced by the quantity and type of colloids present in the 
soil (Tan, 2010). These relationships indicate that soil 
properties are interdependent. Sandy soils, characterized by 
larger particle sizes, exhibit a low specific surface area, 
leading to reduced CEC values for Mg, Ca, and Na. The limited 
capacity to retain these cations results in a diminished level 
of interchangeable bases. In contrast, clay soils possess a high 
specific surface area, resulting in elevated CEC and an 
increased ability to retain exchangeable bases. The strong 
correlation among land biophysical properties is also 
observed in other PCs. The correlation coefficient between 
available K and potential K2O in PC2 is 0.99, indicating a strong 
relationship. The correlation coefficients observed are 
significant: 0.76 between total N and organic C in PC3, -0.62 
between pH and exchangeable Al in PC4, and 0.79 between 
potential P and available P in PC5.  

The relationship between exchangeable K and potential 
K2O is robust and mutually reinforcing, as potential K2O serves 
as the primary source of exchangeable K. The release of 
potassium elements from potential K2O in the primary 
mineral adsorption complex in soil, due to the weathering or 
alteration of primary minerals such as feldspar, leads to an 
increase in the content of exchangeable K in the soil solution. 
Soil potassium exists in four forms: (1) K within the primary 
mineral crystal structure (unavailable), (2) K in non-
exchangeable positions within secondary minerals (slowly 
available), (3) K in an exchangeable form on soil colloid 
surfaces (readily available), and (4) potassium ions that are 
soluble in water (readily available). Potassium does not play 
as directly influential on environmental quality as 
phosphorus; however, insufficient levels of this element 
frequently restrict crop growth and reduce crop quality 
(Brady & Weil, 2000). 

The relationship between soil pH and exchangeable Al is 
significant and mutually reinforcing, consistent with the 

findings of Gillespie et al. (2021). An increase in soil pH, such 
as liming, results in a decrease in the level of exchangeable Al. 
Dolomitic lime supplies Ca and Mg, enhancing the microbial 
activity in acidic soils, improving the availability of nutrients 
such as N and P in acidic soils, and ultimately increasing yield. 
The addition of Ca cations to the soil raises soil pH; 
concurrently, it displaces Al from the soil’s adsorption 
complex, resulting in a reduction of exchangeable Al (Shaaban 
et al., 2024). 

The relationship between organic C content and total N is 
significant, as a substantial portion of organic-N originates 
from the decomposition of organic matter. In China’s slope 
cropland, a significant positive correlation exists between the 
C/N ratio and SOC (He et al., 2025). N mineralization exhibited 
a correlation with C mineralization, while the decomposition 
of soil organic matter (SOM) quantifies the relative 
proportions of biologically available carbon (C) and nitrogen 
(N) for decomposition. 

The relationship between available P and potential P2O5 is 
significant and mutually reinforcing. The availability of P 
nutrients is influenced by the potential P2O5 content and P 
fixation within the soil solution. The P2O5 present in the 
primary mineral adsorption complex serves as a source of P 
nutrients in soil solution, facilitated by the gradual release of 
P through the weathering or alteration of these minerals. 
Soils formed from volcanic ash or tuff, characterized by high 
levels of amorphous or allophane minerals, typically exhibit 
low P nutrient availability due to P fixation by these minerals. 
The application of P fertilizer to these soils is essential for 
enhancing land productivity and crop yield. Phosphorus is an 
essential element in both natural and agricultural ecosystems 
globally. It ranks second to nitrogen in significance in 
producing healthy plants and the attainment of profitable 
yields. The quantity of phosphorus in native soils is limited, 
with a significant portion being unavailable to plants (Brady & 
Weil, 2000). Phosphorus is a crucial macronutrient for coffee 
plantations, as it serves as an energy source for the growth of 
new branches for future harvests, supports the growth of the 
vegetative and reproductive branches, and provides essential 
nutrients (Dias et al., 2015). This study also revealed that 
coffee plantations exhibit positive responses to the 
application of P fertilizer. 

The multiple regression equation has identified the key 
components influencing land productivity for Arabica coffee; 
however, it exhibits a very low R2 value. A low R2 value 
signifies the limitations of the multiple regression equation 
model that incorporates numerous variables. The low R2 
value may result from additional factors influencing Arabica 
coffee productivity that are not accounted for as dependent 
variables, such as cultivation management, climate, and 
socio-economic factors. Rubinfeld (2011) suggests that a low 
R² may signify the existence of unmeasured or excluded 
variables that significantly affect the dependent variable. 

The regression analysis results indicated that all the PCs 
utilized as independent variables in this model were 
statistically significant at <0.05 (Fig. 3). This indicates that 
these PCs do not significantly affect the productivity of 
Arabica coffee. PC2 exhibits the smallest p-value among the 
PCs, indicating a more specific influence relative to others. 
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PC2 represents the factor index exhibiting the highest 
absolute coefficient value. This consists of exchangeable 
potassium K and potential K2O. PC3 follows this PC and 
includes total N, organic C, elevation, and slope, indicating 
that the contribution of the factor value is the highest. This 
suggests that these two PCs are the primary contributors to 
the increase in Arabica coffee production within the research 
area.  

The role of potassium in coffee production is linked to its 
involvement in enzyme activation for various metabolic 
processes in the plant, such as photosynthesis, synthesis of 
proteins and carbohydrates, and the maintenance of cell 
turgidity (Dias et al., 2018). Nitrogen (N) fertilization is 
essential for achieving high coffee yields, as N is the primary 
nutrient necessary for vegetative growth and the second 
most exported to the beans. The potassium (K) requirement 
is often regarded as equivalent to the N requirement; 
however, in contrast to N, K is predominantly located in the 
pulp of coffee beans (Clemente et al., 2015). Organic carbon 
significantly contributes to the stability of soil aggregates. 
Budiastuti et al. (2020) indicated that agroforestry-based land 
management systems represent the most effective approach 
for reducing soil erosion rates. 

Livestock manure serves as an important source of 
fertilizer. Manure application is often more beneficial than 
chemical fertilizers for enhancing soil fertility, owing to its 
high organic matter content and extensive array of mineral 
elements for plant growth. Numerous studies indicate that 
the application of livestock manure increases the 
concentrations of organic carbon, nitrogen, phosphorus, 
potassium, and various other nutrients in the soil (Adekiya et 
al., 2020; HuaGang et al., 2023; Yao et al., 2020). Manure and 
compost have garnered significant attention due to their 
beneficial effects on soil structure, stability, nitrogen levels, 
and carbon content. The biological components of soil 
contribute to the formation of soil humus, nutrient cycling, 
soil structure development, and various other functions 
(Esmaeilzadeh & Ahangar, 2014). Applications of organic 
matter, including compost and manure, enhance organic C 
and K levels in soil, improve CEC, and diminish disease 
incidence in coffee plantations (Resende et al., 2022). The 
amendment improved total soil organic matter and soil pH, 
while reducing exchangeable aluminum (Muktamar et al., 
2020). Liming and compost application enhanced soil N 
availability, and the activities of enzymes related to C and N 
cycling (Resende et al., 2022). 

The relationship model established between the 
biophysical properties of the land and the influence of Arabica 
coffee production is not comprehensive for the entire Arabica 
coffee growing region, remaining confined to the research 
area in Bandung Regency. Utilizing extensive and varied 
datasets across broader regions enables the resultant model 
to effectively represent a larger coffee-growing area. The R² 
value of 9.8% in the multiple regression analysis suggests the 
presence of additional unmeasured factors, such as pest and 
disease occurrence, agricultural management practices, and 
genetic variation, that may influence productivity. Future 
research incorporating a larger dataset from various locations 

and including additional agronomic variables may enhance 
the robustness of the predictive model. 

5. CONCLUSION 
The principal component analysis (PCA) results 

demonstrate that the various land characteristics evaluated 
can be succinctly condensed into seven principal component 
indices, which collectively explain 75.8% of the total variance 
in the data. The first principal component (PC1) encompasses 
variables such as sand and clay content, along with 
exchangeable magnesium (Mg), calcium (Ca), and sodium 
(Na), accounting for the largest proportion of variance at 
18.6%. The multiple regression analysis reveals that the 
principal components utilized as independent variables do 
not have a statistically significant effect on Arabica coffee 
productivity. However, PC2 is identified as the most 
influential among them, followed by PC3. PC3 includes total 
nitrogen (N), organic carbon (C), altitude, and slope factors, 
which are identified as the primary contributors to variations 
in Arabica coffee yield. 
  
Acknowledgments 

We thank the Director of the Indonesia Endowment Fund 
for Education for providing financial support. A special thanks 
go to Muhammad Rafid Chandra, Muhamad Fiqra Fadhilah, 
Firas Tisnawijaya, and Muhammad Taufik for their 
contributions to survey activities in the field. Furthermore, we 
acknowledge Ms. Rohimatus and Mr. Rezky Anggakusuma for 
their support in the laboratory work. 

 

Declaration of Competing Interest 
The authors declare that no competing financial or 

personal interests may appear to influence the work reported 
in this paper. 
 

References 
Abdi, H., & Williams, L. J. (2010). Principal component 

analysis. WIREs Computational Statistics, 2(4), 433-
459. https://doi.org/10.1002/wics.101  

Adekiya, A. O., Ejue, W. S., Olayanju, A., Dunsin, O., Aboyeji, 
C. M., Aremu, C., . . . Akinpelu, O. (2020). Different 
organic manure sources and NPK fertilizer on soil 
chemical properties, growth, yield and quality of okra. 
Scientific Reports, 10(1), 16083. 
https://doi.org/10.1038/s41598-020-73291-x  

Alzwar, M., Akbar, N., & Bachri, S. (1992). Peta geologi lembar 
Garut dan Pameungpeuk, Jawa. Direktorat Geologi, 
Bandung, Indonesia. 

BBSDLP. (2016). Atlas Peta Tanah Skala 1:50,000 Kabupaten 
Bandung, Provinsi Jawa Barat. Bogor, Indonesian 
Center for Agricultural Land Resources Research and 
Development. 

Benevenute, P. A. N., Pereira, F. A. C., Barbosa, S. M., da Silva, 
R. F., Domingues, M. I. S., Marques Filho, A. C., . . . Silva, 
B. M. (2025). Deep soil tillage in the coffee planting 
furrow has long-lasting benefits for improving soil 
physical quality and enhancing plant vigor in dense 

https://doi.org/10.1002/wics.101
https://doi.org/10.1038/s41598-020-73291-x


Pratamaningsih et al. SAINS TANAH – Journal of Soil Science and Agroclimatology, 22(2), 2025 
 

221 

soils. Soil and Tillage Research, 248, 106448. 
https://doi.org/10.1016/j.still.2025.106448  

Brady, N. C., & Weil, R. R. (2000). Elements of the Nature and 
Properties of Soils (12th ed.). Prentice Hall. 
https://books.google.co.id/books?id=EaKcQgAACAAJ  

Budiastuti, M. T. S., Purnomo, D., Hendro, H., Sudjianto, U., & 
Gunawan, B. (2020). Rehabilitation of critical land by 
Implementing complex agroforestry at the prioritized 
subwatersheds in the Muria Region. Sains Tanah 
Journal of Soil Science and Agroclimatology, 17(1), 8. 
https://doi.org/10.20961/stjssa.v17i1.37704  

Clemente, J. M., Martinez, H. E. P., Alves, L. C., Finger, F. L., & 
Cecon, P. R. (2015). Effects of nitrogen and potassium 
on the chemical composition of coffee beans and on 
beverage quality. Acta Scientiarum. Agronomy, 37(3), 
297-305. 
https://doi.org/10.4025/actasciagron.v37i3.19063  

Climate Data. (2024). Climate: Asia. Retrieved June 1, 2024 
from https://en.climate-data.org/asia/ 

Dias, K. G. d. L., Guimarães, P. T. G., do Carmo, D. L., Reis, T. 
H. P., & Lacerda, J. J. d. J. (2018). Alternative sources of 
potassium in coffee plants for better soil fertility, 
productivity, and beverage quality. Pesquisa 
Agropecuária Brasileira, 53(12), 1355-1362. 
https://doi.org/10.1590/S0100-204X2018001200008  

Dias, K. G. d. L., Neto, A. E. F., Guimarães, P. T. G., Reis, T. H. 
P., & Oliveira, C. H. C. d. (2015). Coffee yield and 
phosphate nutrition provided to plants by various 
phosphorus sources and levels. Ciência e 
Agrotecnologia, 39(2), 110-120. 
https://doi.org/10.1590/S1413-70542015000200002  

Ditjenbun. (2023). STATISTIK PERKEBUNAN JILID I 2022-2024 
[STATISTICS OF ESTATE CROPS VOLUME I 2022-2024]. 
Directorate General of Estates, Ministry of Agriculture 
of Republic of Indonesia. 
https://ditjenbun.pertanian.go.id/buku-statistik-
perkebunan-jilid-i-2022-2024/  

Esmaeilzadeh, J., & Ahangar, A. G. (2014). Influence of soil 
organic matter content on soil physical, chemical and 
biological properties. International Journal of Plant, 
Animal and Environmental Sciences, 4(4), 244-252. 
https://www.fortunejournals.com/ijpaes/admin/php/
uploads/732_pdf.pdf  

Eviati, Sulaeman, Herawaty, L., Anggria, L., Usman, Tantika, H. 
E., . . . Wuningrum, P. (2023). Petunjuk Teknis Analisis 
Kimia Tanah, Tanaman, Air, dan Pupuk (3rd ed.). 
Testing Center for Soil and Fertilizer Instrument 
Standards, Ministry of Agriculture of the Republic of 
Indonesia. 
https://tanahpupuk.bsip.pertanian.go.id/berita/jukni
s-analisis-kimia-edisi-3-acuan-prosedur-analisis-
tanah-tanaman-air-dan-pupuk  

FAO. (2007). Land evaluation: towards a revised framework 
(LE_Rev). FOOD AND AGRICULTURE ORGANIZATION 
OF THE UNITED NATIONS. https://www.fao.org/land-
water/land/land-governance/land-resources-
planning-toolbox/category/details/fr/c/1029521/  

FAO. (2024). FAOSTAT. Statistical database. Food and 
Agriculture Organization of the United Nations. 

Retrieved June 27, 2024 from 
https://www.fao.org/faostat/en/#data/QCL 

Getachew, M., Boeckx, P., Verheyen, K., Tolassa, K., Tack, A. J. 
M., Hylander, K., . . . De Frenne, P. (2023). Within and 
among farm variability of coffee quality of 
smallholders in southwest Ethiopia. Agroforestry 
Systems, 97(5), 883-905. 
https://doi.org/10.1007/s10457-023-00833-3  

Gillespie, C. J., Antonangelo, J. A., & Zhang, H. (2021). The 
Response of Soil pH and Exchangeable Al to Alum and 
Lime Amendments. Agriculture, 11(6), 547. 
https://doi.org/10.3390/agriculture11060547  

He, Z., He, S., Zheng, Z., Yi, H., Qu, S., & Liu, X. (2025). Change 
in soil organic carbon after slope cropland changed 
into terrace in southwest China. CATENA, 248, 108580. 
https://doi.org/10.1016/j.catena.2024.108580  

HuaGang, H., Wang, D., SiQi, M., JianJun, P., & ZhaoFu, L. 
(2023). Hyperspectral Prediction of Organic Matter in 
Soils of Different Salinity Levels in the Yellow River 
Delta. Scientia Agricultura Sinica, 56(10), 1905-1919. 
https://doi.org/10.3864/j.issn.0578-
1752.2023.10.008  

Jolliffe, I. T., & Cadima, J. (2016). Principal component 
analysis: a review and recent developments. 
Philosophical Transactions of the Royal Society A: 
Mathematical, Physical and Engineering Sciences, 
374(2065), 20150202. 
https://doi.org/10.1098/rsta.2015.0202  

Liliane, T. N., & Charles, M. S. (2020). Factors Affecting Yield 
of Crops. In D. Amanullah (Ed.), Agronomy - Climate 
Change & Food Security. IntechOpen. 
https://doi.org/10.5772/intechopen.90672  

Muktamar, Z., Lifia, L., & Adiprasetyo, T. (2020). Phosphorus 
availability as affected by the application of organic 
amendments in Ultisols. Sains Tanah Journal of Soil 
Science and Agroclimatology, 17(1), 7. 
https://doi.org/10.20961/stjssa.v17i1.41284  

Mulyono, A., Suriadikusumah, A., Harriyanto, R., & 
Djuwansah, M. R. (2019). Soil Quality under 
Agroforestry Trees Pattern in Upper Citarum 
Watershed, Indonesia. Journal of Ecological 
Engineering, 20(1), 203-213. 
https://doi.org/10.12911/22998993/93942  

Pivková, I., Kukla, J., Hnilička, F., Hniličková, H., Krupová, D., & 
Kuklová, M. (2024). Relationship of selected properties 
of Cambisols to altitude and forest ecosystems of four 
vegetation grades. Heliyon, 10(10), e31153. 
https://doi.org/10.1016/j.heliyon.2024.e31153  

Pusdatin. (2023). Analisis Kinerja Perdagangan Kopi. Center 
for Agricultural Data and Information Systems, 
Secretariat General, Ministry of Agriculture of the 
Republic of Indonesia.  

Resende, L. S., Botrel, É. P., Pozza, E. A., Roteli, K. d. C., de 
Souza Andrade, O. C., & Pereira, R. C. M. (2022). Effect 
of soil moisture, organic matter and fertilizer 
application on brown eye spot disease in coffee 
plantations. European Journal of Plant Pathology, 
163(2), 351-367. https://doi.org/10.1007/s10658-
022-02481-2  

https://doi.org/10.1016/j.still.2025.106448
https://books.google.co.id/books?id=EaKcQgAACAAJ
https://doi.org/10.20961/stjssa.v17i1.37704
https://doi.org/10.4025/actasciagron.v37i3.19063
https://en.climate-data.org/asia/
https://doi.org/10.1590/S0100-204X2018001200008
https://doi.org/10.1590/S1413-70542015000200002
https://ditjenbun.pertanian.go.id/buku-statistik-perkebunan-jilid-i-2022-2024/
https://ditjenbun.pertanian.go.id/buku-statistik-perkebunan-jilid-i-2022-2024/
https://www.fortunejournals.com/ijpaes/admin/php/uploads/732_pdf.pdf
https://www.fortunejournals.com/ijpaes/admin/php/uploads/732_pdf.pdf
https://tanahpupuk.bsip.pertanian.go.id/berita/juknis-analisis-kimia-edisi-3-acuan-prosedur-analisis-tanah-tanaman-air-dan-pupuk
https://tanahpupuk.bsip.pertanian.go.id/berita/juknis-analisis-kimia-edisi-3-acuan-prosedur-analisis-tanah-tanaman-air-dan-pupuk
https://tanahpupuk.bsip.pertanian.go.id/berita/juknis-analisis-kimia-edisi-3-acuan-prosedur-analisis-tanah-tanaman-air-dan-pupuk
https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/fr/c/1029521/
https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/fr/c/1029521/
https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/fr/c/1029521/
https://www.fao.org/faostat/en/#data/QCL
https://doi.org/10.1007/s10457-023-00833-3
https://doi.org/10.3390/agriculture11060547
https://doi.org/10.1016/j.catena.2024.108580
https://doi.org/10.3864/j.issn.0578-1752.2023.10.008
https://doi.org/10.3864/j.issn.0578-1752.2023.10.008
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.5772/intechopen.90672
https://doi.org/10.20961/stjssa.v17i1.41284
https://doi.org/10.12911/22998993/93942
https://doi.org/10.1016/j.heliyon.2024.e31153
https://doi.org/10.1007/s10658-022-02481-2
https://doi.org/10.1007/s10658-022-02481-2


Pratamaningsih et al. SAINS TANAH – Journal of Soil Science and Agroclimatology, 22(2), 2025 
 

222 

Rubinfeld, D. L. (2011). Reference guide on multiple 
regression. In Reference manual on scientific evidence. 
The National Academies Press. 
https://doi.org/10.17226/13163  

Sappe, N. J., Baja, S., Neswati, R., & Rukmana, D. (2022). Land 
suitability assessment for agricultural crops in 
Enrekang, Indonesia: combination of principal 
component analysis and fuzzy methods. Sains Tanah 
Journal of Soil Science and Agroclimatology, 19(2), 15. 
https://doi.org/10.20961/stjssa.v19i2.61973  

Shaaban, M., Wang, X., Song, P., Hu, R., & Wu, Y. (2024). 
Impact of Dolomite Liming on Ammonia-Oxidizing 
Microbial Populations and Soil Biochemistry in Acidic 
Rice Paddy Soils. Agronomy, 14(9), 2070. 
https://doi.org/10.3390/agronomy14092070  

Siahaan, A. S. A., Hanum, C., & Ernawita. (2022). THE 
CORRELATION OF ELEVATION, SOIL CHEMICAL 
PROPERTIES AND YIELD OF COFFEE ARABICA IN 
SHADED CONDITIONS. IRAQI JOURNAL OF 
AGRICULTURAL SCIENCES, 53(6), 1407- 1417. 
https://doi.org/10.36103/ijas.v53i6.1656  

Silitonga, P. H. (1973). Peta geologi lembar Bandung, Djawa. 
Direktorat Geologi, Bandung. 

Soil Survey Staff. (2014). Kellogg Soil Survey Laboratory 
Methods Manual. Soil Survey Investigations Report No. 
42, Version 5.0 (R. Burt & Soil Survey Staff, Eds.). U.S. 
Department of Agriculture, Natural Resources 
Conservation Service. 
https://www.isric.org/sites/default/files/KelloggSSL_
MethodsManual_R42V5_2014.pdf  

Supriyadi, E. (2017). Perbandingan metode partial least 
square (PLS) dan principal component regression (PCR) 
untuk mengatasi multikolinearitas pada model regresi 

linear berganda. Unnes Journal of Mathematics, 6(2), 
117-128.  

Tan, K. H. (2010). Principles of soil chemistry. CRC press. 
https://doi.org/10.1201/9781439894606  

Thao, N. T. T., Khoi, D. N., Denis, A., Viet, L. V., Wellens, J., & 
Tychon, B. (2022). Early Prediction of Coffee Yield in 
the Central Highlands of Vietnam Using a Statistical 
Approach and Satellite Remote Sensing Vegetation 
Biophysical Variables. Remote Sensing, 14(13), 2975. 
https://doi.org/10.3390/rs14132975  

Worku, M., Astatkie, T., & Boeckx, P. (2022). Effect of growing 
conditions and postharvest processing on Arabica 
coffee bean physical quality features and defects. 
Heliyon, 8(4), e09201. 
https://doi.org/10.1016/j.heliyon.2022.e09201  

Worku, M., de Meulenaer, B., Duchateau, L., & Boeckx, P. 
(2018). Effect of altitude on biochemical composition 
and quality of green arabica coffee beans can be 
affected by shade and postharvest processing method. 
Food Research International, 105, 278-285. 
https://doi.org/10.1016/j.foodres.2017.11.016  

Yadessa, A., Burkhardt, J., Bekele, E., Hundera, K., & 
Goldbach, H. (2020). The major factors influencing 
coffee quality in Ethiopia: the case of wild Arabica 
coffee (Coffea arabica L.) from its natural habitat of 
southwest and southeast afromontane rainforests. 
African Journal of Plant Science, 14(6), 213-230. 
https://doi.org/10.5897/AJPS2020.1976  

Yao, J., E, S., Yuan, J., Shi, X., & Che, Z. (2020). Effects of 
different organic matters on crop yields, soil quality 
and heavy metal content in irrigated desert soil. 
Chinese Journal of Eco-Agriculture, 28(6), 813-825. 
https://doi.org/10.13930/j.cnki.cjea.190850  

 

https://doi.org/10.17226/13163
https://doi.org/10.20961/stjssa.v19i2.61973
https://doi.org/10.3390/agronomy14092070
https://doi.org/10.36103/ijas.v53i6.1656
https://www.isric.org/sites/default/files/KelloggSSL_MethodsManual_R42V5_2014.pdf
https://www.isric.org/sites/default/files/KelloggSSL_MethodsManual_R42V5_2014.pdf
https://doi.org/10.1201/9781439894606
https://doi.org/10.3390/rs14132975
https://doi.org/10.1016/j.heliyon.2022.e09201
https://doi.org/10.1016/j.foodres.2017.11.016
https://doi.org/10.5897/AJPS2020.1976
https://doi.org/10.13930/j.cnki.cjea.190850

	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. Description of the study area
	2.2. Data collections

	3. RESULTS
	3.1. Description of biophysical land properties data
	3.2. The results of Pearson correlation analysis
	3.3. The results of principal component regression analysis
	3.4. Multiple regression analysis

	4. DISCUSSION
	5. CONCLUSION
	Declaration of Competing Interest
	References

